
Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Virtual Machines and Compilation

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

September 28, 2020

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Table of Contents

1 Overview

2 Virtual Machines
Register Machines
Stack Machines

3 Compilation

4 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Note: The material covered in this lecture will not be on the
midterm. However, we will cover virtual machines again later in
this course, and thus this material may appear on the final exam.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Table of Contents

1 Overview

2 Virtual Machines
Register Machines
Stack Machines

3 Compilation

4 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

The Difference Between Interpreters and Compilers

An interpreter runs the program, while a compiler translates
expressions to another language, usually assembly language or
machine code.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

What Do We Compile To?

There are some languages which are normally compiled to the
assembly language or machine code of real hardware
architectures (e.g., the GCC and Clang compilers for C
compile to architectures such as x86-64 and ARM).

However, some compilers translate expressions to the
assembly language or machine code of contrived architectures
known as virtual machines.

In fact, a lot of languages that are commonly thought of as
“interpreted” (such as Python) actually use a VM.

We’ve been using a virtual machine (the Racket virtual
machine) the whole time we’ve been using Scheme/Racket!

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

What Do We Compile To?

There are some languages which are normally compiled to the
assembly language or machine code of real hardware
architectures (e.g., the GCC and Clang compilers for C
compile to architectures such as x86-64 and ARM).

However, some compilers translate expressions to the
assembly language or machine code of contrived architectures
known as virtual machines.

In fact, a lot of languages that are commonly thought of as
“interpreted” (such as Python) actually use a VM.

We’ve been using a virtual machine (the Racket virtual
machine) the whole time we’ve been using Scheme/Racket!

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

What Do We Compile To?

There are some languages which are normally compiled to the
assembly language or machine code of real hardware
architectures (e.g., the GCC and Clang compilers for C
compile to architectures such as x86-64 and ARM).

However, some compilers translate expressions to the
assembly language or machine code of contrived architectures
known as virtual machines.

In fact, a lot of languages that are commonly thought of as
“interpreted” (such as Python) actually use a VM.

We’ve been using a virtual machine (the Racket virtual
machine) the whole time we’ve been using Scheme/Racket!

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Table of Contents

1 Overview

2 Virtual Machines
Register Machines
Stack Machines

3 Compilation

4 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

A Note about Virtual Machines

In this class, whenever we are discussing virtual machines, we
are not discussing system virtual machines such as VMWare
Workstation, Oracle VirtualBox, Parallels, etc.

They aim to emulate an entire computer system (not just the
processor, but memory, storage, peripherals, etc.) for the
purpose of running another operating system on top of the OS
running the virtual machine.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

A Note about Virtual Machines

Instead, we will be discussing process virtual machines, which
are used for providing a runtime environment for a single
application or process. This runtime environment has its own
contrived instruction set and memory allocator, but it does
not strive to emulate a complete computer system.

In Unix parlance, each process gets its own virtual machine
(for example, three separately-running Java programs run in
their own JVM instances).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Examples of Virtual Machine Architectures

Java Virtual Machine (JVM)

Microsoft .NET Common Language Runtime (CLR)

Python’s virtual machine

Ruby’s virtual machine (Yet another Ruby VM – YARV)

V8 JavaScript engine (used by Google Chrome)

Note that there are many others.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Why Virtual Machines?

Increases portability (the ability for programs to run on a
variety of operating systems and architectures).

We can define a programming language’s semantics by a
virtual machine instead of piggybacking off another machine
or language.

Compiled code runs faster than interpreted code.

We can exploit just-in-time compilation to further increase
speed (more on this later in the course).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Bytecode

Bytecode is essentially a virtual machine’s “machine code”.
Bytecode is a sequence of instructions. The virtual machine
interprets instructions written in bytecode and executes them,
translating it to the host environment’s machine code.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

There are many ways to design a virtual machine’s architecture,
but we will cover two approaches: register machines (covered in
SICP Chapter 5) and stack machines, a very popular VM design
choice.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Register Machines

Register Machines

Register machines consist of the following components:

An unlimited amount of registers, which are each of a fixed
size and are used to store the inputs and outputs of
instructions.

Operators such as addition and equality operate on registers
and store their results in registers.

A stack, which is used for handling function calls

A program counter

Access to memory

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Register Machines

Instructions Necessary in a Register Machine

Assigning a value to a specific register

Testing whether a register conforms to a specified predicate

Conditional and unconditional branching

Pushing and popping items to and from the stack

Loading a value from a memory location to a specific register

Storing a value from a register to a specific memory location

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Register Machines

Example: GCD in Assembly for a Register Machine

This is GCD written in Scheme. Example is from Chapter 5 of
Structure and Interpretation of Computer Programs:

; Note that gcd is tail-recursive

(define (gcd a b)

(if (= b 0)

a

(gcd b (remainder a b))))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Register Machines

Example: GCD in Assembly for a Register Machine

Example is from Chapter 5 of Structure and Interpretation of
Computer Programs:

; Note that while this is in S-expression syntax,

; this is not Scheme code.

(controller

test-b

(test (op =) (reg b) (const 0)) ; rB = 0?

(branch (label gcd-done)) ; if rB == 0, goto gcd-done

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Register Machines

Example: GCD in Assembly for a Register Machine

Here is a more natural assembly syntax:

test-b:

EQ RB, 0

BRANCH gcd-done

REM RT, RA, RB

ASSIGN RA, RB

ASSIGN RB, RT

GOTO test-b

gcd-done:

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Stack Machines

Stack Machines

Unlike register machines, where operators operate on registers, in a
stack machine, operators operate on entries that have been placed
onto a stack, similar to the postfix calculator you wrote in Lab 1.

; add two numbers

PUSH 5

PUSH 7

ADD ; pops 7 and 5, does 7+5, and pushes 12

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Table of Contents

1 Overview

2 Virtual Machines
Register Machines
Stack Machines

3 Compilation

4 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

This lecture will cover the basics of compilation; there are entire
courses devoted to compilation, such as CS 153.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiler Components

A compiler can be split into two components: the front end, which
handles lexing and parsing to create an abstract syntax tree, and
the back end, which transforms the abstract syntax tree into the
target language, which is usually assembly, bytecode, or machine
code.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

A compiler’s backend will be written very similar to an interpreter’s
eval function, where it takes an expression (the AST) and the
environment as input. However, since the goal of the compiler is
not to execute the AST, but to translate it, we need to recreate
the environment.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Let’s begin with a simple example: the infix arithmetic language.
Let’s make a compiler for infix arithmetic expressions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

<multop> ::= ’*’ | ’/’

<addop> ::= ’+’ | ’-’

<number-expr> ::= (’-’)?[0-9]+ | (’-’)?[0-9]+ ’.’ [0-9]+

| <add-expr>

<add-expr> ::= <number-expr> <addop> <number-expr>

| <mult-expr>

<mult-expr> ::= <number-expr> <multop> <number-expr>

| <expo-expr>

<expo-expr> ::= <number-expr> ^ <number-expr>

| <parens-expr>

<parens-expr> ::= ’(’ <number-expr> ’)’

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Assuming that we are using a stack VM, how would we convert
expressions such as 2 + 3 ∗ 5 into bytecode?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

The front-end of the compiler would covert the expression 2 + 3 ∗ 5
into the following abstract syntax tree:

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

How do we convert 2 + 3 ∗ 5 into bytecode for a stack machine?

Begin whiteboard demo.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiling 2 + 3 ∗ 5 to Bytecode for a Stack Machine

1 Visit top node, which is +. We know from the definition of
addition that it has two children. We are going to push the
results of each child onto the stack.

2 Visit the left node, which is 2. Output PUSH 2.

3 Visit the right node, which is *. We know it must have two
children. We are going to push the results of the children onto
the stack.

4 Visit the left node, which is 3. Output PUSH 3.

5 Visit the right node, which is 5. Output PUSH 5.

6 Perform multiplication. Output MULT.

7 Perform addition. Output ADD.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiling 2 + 3 ∗ 5 to Bytecode for a Stack Machine

1 Visit top node, which is +. We know from the definition of
addition that it has two children. We are going to push the
results of each child onto the stack.

2 Visit the left node, which is 2. Output PUSH 2.

3 Visit the right node, which is *. We know it must have two
children. We are going to push the results of the children onto
the stack.

4 Visit the left node, which is 3. Output PUSH 3.

5 Visit the right node, which is 5. Output PUSH 5.

6 Perform multiplication. Output MULT.

7 Perform addition. Output ADD.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiling 2 + 3 ∗ 5 to Bytecode for a Stack Machine

1 Visit top node, which is +. We know from the definition of
addition that it has two children. We are going to push the
results of each child onto the stack.

2 Visit the left node, which is 2. Output PUSH 2.

3 Visit the right node, which is *. We know it must have two
children. We are going to push the results of the children onto
the stack.

4 Visit the left node, which is 3. Output PUSH 3.

5 Visit the right node, which is 5. Output PUSH 5.

6 Perform multiplication. Output MULT.

7 Perform addition. Output ADD.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiling 2 + 3 ∗ 5 to Bytecode for a Stack Machine

1 Visit top node, which is +. We know from the definition of
addition that it has two children. We are going to push the
results of each child onto the stack.

2 Visit the left node, which is 2. Output PUSH 2.

3 Visit the right node, which is *. We know it must have two
children. We are going to push the results of the children onto
the stack.

4 Visit the left node, which is 3. Output PUSH 3.

5 Visit the right node, which is 5. Output PUSH 5.

6 Perform multiplication. Output MULT.

7 Perform addition. Output ADD.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiling 2 + 3 ∗ 5 to Bytecode for a Stack Machine

1 Visit top node, which is +. We know from the definition of
addition that it has two children. We are going to push the
results of each child onto the stack.

2 Visit the left node, which is 2. Output PUSH 2.

3 Visit the right node, which is *. We know it must have two
children. We are going to push the results of the children onto
the stack.

4 Visit the left node, which is 3. Output PUSH 3.

5 Visit the right node, which is 5. Output PUSH 5.

6 Perform multiplication. Output MULT.

7 Perform addition. Output ADD.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiling 2 + 3 ∗ 5 to Bytecode for a Stack Machine

1 Visit top node, which is +. We know from the definition of
addition that it has two children. We are going to push the
results of each child onto the stack.

2 Visit the left node, which is 2. Output PUSH 2.

3 Visit the right node, which is *. We know it must have two
children. We are going to push the results of the children onto
the stack.

4 Visit the left node, which is 3. Output PUSH 3.

5 Visit the right node, which is 5. Output PUSH 5.

6 Perform multiplication. Output MULT.

7 Perform addition. Output ADD.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiling 2 + 3 ∗ 5 to Bytecode for a Stack Machine

1 Visit top node, which is +. We know from the definition of
addition that it has two children. We are going to push the
results of each child onto the stack.

2 Visit the left node, which is 2. Output PUSH 2.

3 Visit the right node, which is *. We know it must have two
children. We are going to push the results of the children onto
the stack.

4 Visit the left node, which is 3. Output PUSH 3.

5 Visit the right node, which is 5. Output PUSH 5.

6 Perform multiplication. Output MULT.

7 Perform addition. Output ADD.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Compiling 2 + 3 ∗ 5 to Bytecode for a Stack Machine

1 Visit top node, which is +. We know from the definition of
addition that it has two children. We are going to push the
results of each child onto the stack.

2 Visit the left node, which is 2. Output PUSH 2.

3 Visit the right node, which is *. We know it must have two
children. We are going to push the results of the children onto
the stack.

4 Visit the left node, which is 3. Output PUSH 3.

5 Visit the right node, which is 5. Output PUSH 5.

6 Perform multiplication. Output MULT.

7 Perform addition. Output ADD.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

2 + 3 ∗ 5 in Bytecode for a Stack Machine

PUSH 2

PUSH 3

PUSH 5

MULT

ADD

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

What if we add variables to our calculator?

x = 5

y = 10

z = x + y

a = x^2 + y^2

The compiled code would maintain its own environment for
managing its values for x , y , z , and a. The compiler would
maintain a mapping between variables and memory locations,
and the compiled code would refer to these memory locations,
placing values onto the stack whenever necessary.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

What if we add variables to our calculator?

x = 5

y = 10

z = x + y

a = x^2 + y^2

The compiled code would maintain its own environment for
managing its values for x , y , z , and a. The compiler would
maintain a mapping between variables and memory locations,
and the compiled code would refer to these memory locations,
placing values onto the stack whenever necessary.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Another whiteboard example

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Table of Contents

1 Overview

2 Virtual Machines
Register Machines
Stack Machines

3 Compilation

4 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation



Overview Virtual Machines Compilation Preview of Wednesday’s Lecture

Wednesday’s lecture will cover two additional Scheme features:

Continuations (used for implementing control flow)

Macros (another way to extend the language besides adding
functions)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Virtual Machines and Compilation


	Overview
	Virtual Machines
	Register Machines
	Stack Machines

	Compilation
	Preview of Wednesday's Lecture

