
Overview Continuations Macros in Scheme Midterm Preparation

Scheme Continuations and Macros

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

September 30, 2020

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

4 Midterm Preparation

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

4 Midterm Preparation

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Continuations and macros form some of Scheme’s more advanced
features. While they are not strictly necessary to be productive in
Scheme, they are very powerful features.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

The syntax of neither continuations nor macros will be on the
midterm. However, I may ask about the motivation behind why
macros are needed.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

4 Midterm Preparation

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Continuations

The R6RS standard says, “Whenever a Scheme expression is
evaluated there is a continuation wanting the result of the
expression. The continuation represents an entire (default) future
for the computation.”

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Continuation Example

Given the expression

(+ 1 3)

The continuation of 3 in the above expression adds 1 to it.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Continuation Definition

Definition (Continuation)

The continuation of an expression E is the expression that wants
the evaluated result of E .

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Continuations

Usually we don’t need to think about continuations when we
code in Scheme.

However, there are rare occasions where we want to be able to
deal with continuations manually.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Continuations

Usually we don’t need to think about continuations when we
code in Scheme.

However, there are rare occasions where we want to be able to
deal with continuations manually.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

call-with-current-continuation

Often abbreviated call/cc in many Scheme implementations,
including Racket.

Syntax: (call/cc fn)

call/cc calls fn, a function that has one parameter, with the
argument being an escape procedure.

According to the R6RS standard, “The escape procedure can
then be called with an argument that becomes the result of
the call to call/cc. That is, the escape procedure abandons
its own continuation and reinstates the continuation of the
call to call/cc.”

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Example of call-with-current-configuration

(let ((fn (lambda (escape)

(+ 2 (escape 3)))))

(+ 1 (call/cc fn)))

The above code evaluates to 4, because (escape 3) is performing
1 + 3, and because the continuation of call/cc fn) is +1.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Example of call-with-current-configuration

(let ((fn (lambda (escape)

(+ 2 (escape 3)))))

(+ 1 (call/cc fn)))

The above code evaluates to 4, because (escape 3) is performing
1 + 3, and because the continuation of call/cc fn) is +1.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Demo in DrRacket

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Notes about call-with-current-configuration

fn in (call/cc fn) always takes one argument: the escape
procedure.

The escape procedure’s parameters are the same number as
the continuation of the call to call/cc.

The escape procedure is a closure that can be called at any
time. It can be passed along like any other value, and it can
be stored like any other value.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

More about Continuations

Because the escape procedure can be called at any time by any
expression that has access to it, continuations can be used to
implement a wide variety of custom control-flow operations. Use
continuations with care.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

4 Midterm Preparation

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Motivation for Macros

We can extend Lisp by defining functions that are based on
existing functions:

(define (sqrt n)

(expt n 0.5))

(sqrt 2)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Limitations of Function Definitions

However, there are some constructs we would like to provide that
would be difficult to express as functions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Implementing let

Suppose we were implementing our own let function. Below is a
reasonable attempt:

(define (my-let bindings body)

(if (empty? bindings)

body

((lambda (first (first bindings))

(my-let (rest bindings) body))

(second (first bindings)))))

What is wrong with this approach?

The problem is that all function arguments must be evaluated
unless they are quoted.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Implementing let

Suppose we were implementing our own let function. Below is a
reasonable attempt:

(define (my-let bindings body)

(if (empty? bindings)

body

((lambda (first (first bindings))

(my-let (rest bindings) body))

(second (first bindings)))))

What is wrong with this approach?

The problem is that all function arguments must be evaluated
unless they are quoted.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Implementing let

We could sidestep the problem by requiring the quoting of
arguments we don’t want evaluated and then using the eval

function inside of my-let in order to provide more fine-grained
control over evaluation:

(my-let ((’x 5)

(’y 10))

’(+ x y))

However, it would be inconvenient for programmers if they were
required to quote so many arguments like this.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Implementing let

We could sidestep the problem by requiring the quoting of
arguments we don’t want evaluated and then using the eval

function inside of my-let in order to provide more fine-grained
control over evaluation:

(my-let ((’x 5)

(’y 10))

’(+ x y))

However, it would be inconvenient for programmers if they were
required to quote so many arguments like this.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Solution to Implementing let: Macros

The solution is to use macros, which will give us finer control over
how a Scheme expression is evaluated without resorting to quoting.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Solution to Implementing let

; Solution is from Veit Heller’s blog at

; blog.veitheller.de/Scheme_Macros_III:_Defining_let.html

(define-syntax my-let

(syntax-rules ()

((my-let ((var val) ...) body ...)

((lambda (var ...) body ...) val ...))))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Demo in DrRacket

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Scheme and Racket have a variety of mechanisms for defining
macros, some of them implementation-dependent. We will show
examples of define-syntax and define-syntax-rule in Racket.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

define-syntax-rule Example in Racket

; From Professor Thomas Austin’s CS 152 Slides

(define-syntax-rule (swap x y)

(let ((tmp x))

(set! x y)

(set! y tmp)))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

define-syntax-rule Example in Racket

; From Professor Thomas Austin’s CS 152 Slides

(define-syntax-rule (my-if c thn els)

(cond ((and (list? c) (empty? c)) els)

((and (number? c) (= 0 c)) els)

((and (boolean? c) (not c)) els)

(else thn)))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

For more information about macros, please see the documentation
for define-syntax and define-syntax-rule in Racket.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Summary of Macros

Macros are necessary for implementing certain language
features in Scheme without excessive quoting.

There are many different mechanisms for implementing
macros in Scheme and Racket, but some basic functions for
implementing them in Racket are define-syntax and
define-syntax-rule.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

4 Midterm Preparation

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Summary of Topics to Study

Differences between procedural, structured, and functional
programming

Regular and context-free grammars

Abstract syntax trees

Scheme features covered in class (except for call/cc and
those related to macro creation)

Using tail recursion

Environments

Evaluating Expressions with Environments (note that you
won’t need your Project 1 code)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Regular and Context-Free Grammars

Please be prepared to:

1 Know the differences between these two types of grammars.

2 Be able to recognize code that conforms to these grammars
and code that does not conform.

3 Be familiar with Backus-Naur Form (BNF) and its extended
variant EBNF.

4 Be able to describe how operator precedence works in a EBNF
grammar.

5 Be able to draw an abstract syntax tree given a language form
and a grammar.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Environments and Evaluation

Please be prepared to describe in full, complete detail with
diagrams how expressions like this are evaluated:

(let* ((x 3)

(y (* x x)))

(+ x y))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme Midterm Preparation

Words of Advice

Because this is a take-home exam, the exam won’t be about
definitions and other facts that can be simply looked up; it will be
about how well you have mastered the concepts taught so far in
CS 152 and how you can apply what you have learned.

For example, don’t just memorize the differences between a regular
grammar and a context-free grammar. Study why this matters.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros


	Overview
	Continuations
	Macros in Scheme
	Midterm Preparation

