
Michael McThrow
November 9, 2020

Cuts and Negation
CS 152 -- Programming Paradigms
San José State University

Agenda

• Backtracking and Search Trees

• Cuts

• Negation

• Project #2 Details

• Final Four Weeks of CS 152

Backtracking and Search Trees

Search Trees
• According to Sterling and Shapiro, "A search tree of a goal G with respect to a

program P is defined as follows":

• G is the tree's root.

• Nodes are goals (can be conjunctive).

• "There is an edge leading from a node N for each clause in the program
whose head unifies with the selected goal."

• "Each branch in the tree from the root is a computation of G by P."

• Leaves are either success nodes or failure nodes. Each success node is a
solution of the query.

Search Tree Example
111 Theory of Logic Programs

Figure 5.2 Two search trees

reduction is the first goal. The edges are labeled with substitutions that
are applied to the variables in the leftmost goal. These substitutions are
computed as part of the unification algorithm.

Search trees correspond closely to traces for deterministic computa-
tions. The traces for the append query and hanoi query given, respec-
tively, in Figures 4.3 and 4.5 can be easily made into search trees. This is
Exercise (i) at the end of this section.

Search trees contain multiple success nodes if the query has mul-
tiple solutions. Figure 5.3 contains the search tree for the query ap-
pend(As , Bs, [a, b, ci)? with respect to Program 3.15 for append, asking
to split the list [a, b, ci into two. The solutions for As and Bs are found
by collecting the labels of the edges in the branch leading to the success
node. For example, in the figure, following the leftmost branch gives the
solution {As=[a,b,c] ,Bs=[J).

The number of success nodes is the same for any search tree of a given
goal with respect to a program.

Search trees can have infinite branches, which correspond to nonter-
minating computations. Consider the goal append(Xs, [c,di ,Ys) with
respect to the standard program for append. The search tree is given in
Figure 5.4. The infinite branch is the nonterminating computation given
in Figure 4.6.

From Sterling and Shapiro, p. 111

Search Tree Example

From Sterling and Shapiro, p. 112

112 Chapter 5

Figure 5.3 Search tree with multiple success nodes

Complexity measures can also be defined in terms of search trees. Pro-
log programs perform a depth-first traversal of the search tree. There-
fore, measures based on the size of the search tree will be a more real-
istic measure of the complexity of Prolog programs than those based on
the complexity of the proof tree. However, the complexity of the search
tree is much harder to analyze.

There is a deeper point lurking. The relation between proof trees and
search trees is the relation between nondeterministic computations and
deterministic computations. Whether the complexity classes defined via
proof trees are equivalent to complexity classes defined via search trees
is a reformulation of the classic P=NP question in terms of logic program-
ming.

5.4.1 Exercises for Section 5.4

Transform the traces of Figure 4.3 and 4.5 into search trees.

Draw a search tree for the query sort([2,4, 1] ,Xs)? using permu-
tation sort.

],Bsa,c]}

{Asl =[],Bs=[b,c]}

C
{As2=[},Bs=lcJ}

Search Trees

• Sometimes there can be multiple possible search trees for a search query.

• Each possible search tree depends on decisions made regarding how new
elements are added to the resolvent when resolving the query and how the
new clause A' from P is found.

Review: Resolution Algorithm

From Sterling and Shapiro, p. 93

Review: Resolution Algorithm (with Prolog implementation details)

From Sterling and Shapiro, p. 93

resolvent is a stack

A = resolvent.pop()
choose first A' in program
P that unifies with A

B1,...,BN are pushed onto the
stack

Backtracking

From Sterling and Shapiro, p. 93

What happens when there
is no A'? We backtrack to
the last A that successfully
unified. This allows us to try
a different computation
path. Note that
backtracking is not shown
in this algorithm.

Cuts

Problems That Arise When Using Prolog
• Unnecessary backtracking in some queries.

• This unnecessary backtracking leads to wasted computations.

• It would be nice for the programmer to be able to ignore, or "prune" branches
of a search tree that the programmer knows are "unfruitful."

• Prolog provides such functionality by providing cuts.

Cuts
• A cut is expressed as a ! in Prolog.

• Whenever Prolog encounters a ! inside of a rule, this means that Prolog will
commit to all of the choices made before ! appeared; the interpreter will not
backtrack on any decision made before !.

Merge Example from Textbook (p. 190)190 Chapter 11

merge(Xs,Ys,Zs) -
Zs is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.

merge([XJXs], [YIYs] , [XIZs]) - X < Y, merge(Xs, [YIYs] ,Zs).
merge([XIXs], [YIYs] , [X,YZs]) - X=:=Y, merge(Xs,Ys,Zs).

merge([XXs], [YIYs] , [YIZs]) - X > Y, merge([XIXs] ,Ys,Zs).
merge(Xs, E] ,Xs).
merge([],Ys,Ys).

Program 11.1 Merging ordered lists

The cut, denoted !, can be used to express the mutually exclusive
nature of the tests. It is placed after the arithmetic tests. For example,
the first merge clause is written

merge([XIXs],[YIYs],[XIZs]) x < Y, !, merge(Xs,[Y IYs],Zs).

Operationally, the cut is handled as follows.
The goal succeeds and commits Prolog to all the choices made since the

parent goal was unified with the head of the clause the cut occurs in.
Although this definition is complete and precise, its ramifications and

implications are not always intuitively clear or apparent.
Misunderstandings concerning the effects of a cut are a major source

for bugs for experienced and inexperienced Prolog programmers alike.
The misunderstandings fall into two categories: assuming that the cut
prunes computation paths it does not, and assuming that it does not
prune solutions where it actually does.

The following implications may help clarify the foregoing terse defini-
tion:

First, a cut prunes all clauses below it. A goal p unified with a clause
containing a cut that succeeded would not be able to produce solutions
using clauses that occur below that clause.
Second, a cut prunes all alternative solutions to the conjunction of
goals that appear to its left in the clause. For example, a conjunctive
goal followed by a cut will produce at most one solution.
On the other hand, the cut does not affect the goals to its right in
the clause. They can produce more than one solution in the event of
backtracking. However, once this conjunction fails, the search proceeds

190 Chapter 11

merge(Xs,Ys,Zs) -
Zs is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.

merge([XJXs], [YIYs] , [XIZs]) - X < Y, merge(Xs, [YIYs] ,Zs).
merge([XIXs], [YIYs] , [X,YZs]) - X=:=Y, merge(Xs,Ys,Zs).

merge([XXs], [YIYs] , [YIZs]) - X > Y, merge([XIXs] ,Ys,Zs).
merge(Xs, E] ,Xs).
merge([],Ys,Ys).

Program 11.1 Merging ordered lists

The cut, denoted !, can be used to express the mutually exclusive
nature of the tests. It is placed after the arithmetic tests. For example,
the first merge clause is written

merge([XIXs],[YIYs],[XIZs]) x < Y, !, merge(Xs,[Y IYs],Zs).

Operationally, the cut is handled as follows.
The goal succeeds and commits Prolog to all the choices made since the

parent goal was unified with the head of the clause the cut occurs in.
Although this definition is complete and precise, its ramifications and

implications are not always intuitively clear or apparent.
Misunderstandings concerning the effects of a cut are a major source

for bugs for experienced and inexperienced Prolog programmers alike.
The misunderstandings fall into two categories: assuming that the cut
prunes computation paths it does not, and assuming that it does not
prune solutions where it actually does.

The following implications may help clarify the foregoing terse defini-
tion:

First, a cut prunes all clauses below it. A goal p unified with a clause
containing a cut that succeeded would not be able to produce solutions
using clauses that occur below that clause.
Second, a cut prunes all alternative solutions to the conjunction of
goals that appear to its left in the clause. For example, a conjunctive
goal followed by a cut will produce at most one solution.
On the other hand, the cut does not affect the goals to its right in
the clause. They can produce more than one solution in the event of
backtracking. However, once this conjunction fails, the search proceeds

Replacement of first rule with an included cut

Merge Example with Cuts (p. 192)192 Chapter 11

merge(Xs,Ys,Zs) -
Zs is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.

merge([XIXs],[YIYs],[XIZs]) -
X < Y, !, merge(Xs,[YIYs],Zs).

merge([XXs] ,[YIYs] , [X,YIZs]) -
X=:=Y, !, merge(Xs,Ys,Zs).

merge([XIXs] , [Y lYs], [YIZs]) -
X > Y, !, merge([XIXs],Ys,Zs).

merge(Xs, E] ,Xs) -
merge([],Ys,Ys) - L

Program 11.2 Merging with cuts

We restate the effect of a cut in a general clause C = A - B1,. . . ,Bk,!,
Bk+2, . . . ,B in a procedure defining A. If the current goal G unifies with
the head of C, and B1,. . .,B further succeed, the cut has the following
effect. The program is committed to the choice of C for reducing G; any
alternative clauses for A that might unify with G are ignored. Further,
should B fail for i> k + 1, backtracking goes back only as far as the L
Other choices remaining in the computation of B, i k, are pruned from
the search tree. If backtracking actually reaches the cut, then the cut fails,
and the search proceeds from the last choice made before the choice of
G to reduce C.

The cuts used in the merge program express that merge is determinis-
tic. That is, only one of the clauses can be used successfully for proving
an applicable goal. The cut commits the computation to a single clause,
once the computation has progressed enough to determine that this is
the only clause to be used.

The information conveyed by the cut prunes the search tree, and hence
shortens the path traversed by Prolog, which reduces the computation
time. In practice, using cuts in a program is even more important for
saving space. Intuitively, knowing that a computation is deterministic
means that less information needs to be kept for use in the event of
backtracking. This can be exploited by Prolog implementations with tail
recursion optimization, discussed in Section 11.2.

Let us consider some other examples. Cuts can be added to the pro-
gram for computing the minimum of two numbers (Program 3.7) in pre-
cisely the same way as for merge. Once an arithmetic test succeeds, there

Minimum Example with Cuts (p. 193)193 Cuts and Negation

minimum(X,Y,Min) -
Min is the minimum of the numbers X and Y.

minimuin(X,Y,X) - XY, L
minimuin(X,Y,Y) - X > Y, L

Program 11.3 minimum with cuts

polynomial (Term,X) -
Term is a poiynornial in X.

polynomial(X,X) - L
polynomial(Term,X) -

constant (Term),
polynomial (Terml+Term2 , X)

polynomial (Terni, X), polynomial(Term2,X).
polynomial (Terml-Term2 , X)

!, polynomial(Terml,X), polynomial(Term2,X).
polynomial (Terml*Term2 ,X)

polynomial(Termi,X), polynomial (Term2,X).
polynomial (Terml/Term2 , X)

polynomial (Terml,X) constant (Term2)
polynomial(TermIN,X) -

!, integer(N), N > O, polynomial (Term,X).

Program 11.4 Recog zing polynomials

is no possibility for the other test succeeding. Program 11.3 is the appro-
priately modified version of minimum.

A more substantial example where cuts can be added to indicate that
a program is deterministic is provided by Program 3.29. The program
defines the relation polynomial(Term,X) for recognizing if Term is a
polynomial in X. A typical rule is

polynomial (Ternil+Term2 , X) -

polynomial(Terml,X), polynomial(Term2,X).

Once the term being tested has been recognized as a sum (by unifying
with the head of the rule), it is known that none of the other polynomial
rules will be applicable. Program 11.4 gives the complete polynomial
program with cuts added. The result is a deterministic program that has
a mixture of cuts after conditions and cuts after unification.

Green and Red Cuts
• Green cuts are used for removing unnecessary backtracking in Prolog

programs.

• All examples shown have been examples of green cuts.

• Green cuts are less controversial.

• Red cuts are used for changing the set of goals the program can prove.

• "A standard Prolog programming technique using red cuts is the omission
of explicit conditions. Knowledge of the behavior of Prolog, specifically the
order in which rules are used in a program, is relied on to omit conditions
that could be inferred to be true" [Sterling and Shapiro, p. 203].

• Highly controversial; USE WITH EXTREME CAUTION!

Negation

Why should Prolog programmers
be cautious about negation?

Recall that in logic programming, if a query results in a "no"
or "false" answer, this does not state anything about the

truth of the query; it means that the interpreter failed to prove
the query from the program [Sterling and Shapiro, p. 13].

However, it is convenient for
programmers to express certain logical

statements using negation.

Examples of Negation

• single(X) :- not married(X).

• fake(X) :- not authentic(X).

• import(X) :- not domestic(X).

The concept "negation as failure" allows
us to express negation in logic

programming.

According to Sterling and Shapiro, "A goal not G
will be assumed to be a consequence of a

program P if G is not a consequence of P" (p. 114).

Cuts can be used to implement
negation as failure.

Negation as Failure
• Prolog provides a fail_if(Goal) predicate, which is equivalent to the not

statement.

• Prolog also has a system predicate called fail that always fails.

• Semantics of not G [Sterling and Shapiro, p. 198]:

198 Chapter 11

notX -
X is not provable.

not X - X, !, fail.
not X.

Program 11.6 Negation as failure

11.3 Negation

The cut can be used to implement a version of negation as failure. Pro-
gram 11.6 defines a predicate not (Goal), which succeeds if Goal fails. As
well as using cut, the program uses the meta-variable facility described in
Chapter 10, and a system predicate fail that always fails.

Standard Prolog provides a predicate fail_if (Goal), which has the
same behavior as not/i. Other Prologs provide the same predicate under
the name \+/i. The rationale for not calling the system predicate not
is that the predicate does not implement true logical negation, and it
is misleading to label it as such. We believe that the user easily learns
how the predicate differs from true negation, as we will explain, and
programmers are helped rather than misled by the name.

Let us consider the behavior of Program 11.6 in answering the query
not G? The first rule applies, and G is called using the meta-variable
facility. If G succeeds, the cut is encountered. The computation is then
committed to the first rule, and not G fails. If the call to G fails, then the
second rule of Program 11.6 is used, which succeeds. Thus not G fails if
G succeeds and succeeds if G fails.

The rule order is essential for Program 11.6 to behave as intended. This
introduces a new, not entirely desirable, dimension to Prolog programs.
Previously, changing the rule order only changed the order of solutions.
Now the meaning of the program can change. Procedures where the rule
order is critical in this sense must be considered as a single unit rather
than as a collection of individual clauses.

The termination of a goal not G depends on the termination of G. If G
terminates, so does not G. If G does not terminate, then not G may or
may not terminate depending on whether a success node is found in the
search tree before an infinite branch. Consider the following nontermi-
nating program:

Project #2 Details

Project #2 Details
• You will be implementing a simple Prolog interpreter.

• No numbers, no type predicates, no meta-logical predicates, no cuts or negation; just
the Prolog you learned in the first 5-6 chapters of The Art of Prolog.

• The key is implementing resolution, unification, and backtracking correctly. You will use
the resolution and unification algorithms from the textbook.

• Choices of programming languages for implementation:

• C, C++, Java, Python, Racket (using DrRacket).

• May work with one partner. Only one partner has to submit, but both names need to be in
the submission files.

• Feel free to test your interpreter on your Lab #3 submissions.

• Due date: Monday, November 23 at 11:59pm Pacific Standard Time.

Final Four Weeks of CS 152
• Week 14 (11/16 and 11/18): Smalltalk

• Week 15 (11/23): Self and JavaScript

• Week 16 (11/30 and 12/2): Miscellaneous Topics

• I'm going to take a poll from the class where students can choose
from various programming language topics. The two topics with
the most votes from the class will be covered on November 30
and December 2.

• Material covered this week will be on the final exam, so choose
something you're passionate about :).

• Week 17 (12/7 and 12/9): Final Review and Final Exam

Lab and Project Schedule
• Labs

• Lab #4 (Prolog) is due Friday, November 13

• Lab #5 (Smalltalk) will be assigned Monday, November 16 and is due Wednesday,
November 25

• Lab #6 (to be determined) will be assigned Saturday, November 28 and will be due
Monday, December 7.

• Projects

• Project #2 (Prolog interpreter) was assigned today and is due Monday, November
23.

• Project #3 (to be determined) will be assigned Monday, November 23 and is due
Friday, December 11 (note that this is after the final).

