
Michael McThrow
November 23, 2020

Self and JavaScript
CS 152 -- Programming Paradigms
San José State University

Agenda
• Course Announcements

• Overview of Prototype-Based Programming

• Self

• JavaScript

• Question and Answer Session

Announcements
• Project #2 due date has been extended to Wednesday, November 25 at 11:59pm

PST.

• Late submission deadline is Sunday, November 29 at 11:59pm PST.

• I will be catching up on all outstanding grading throughout the week; I'll have all
grades except for Project #2 ready by Sunday evening.

• I will also be posting solutions for Project #1, Lab #3, and Lab #4 this week for
finals prep.

• Project #2 grades will be issued no later than Wednesday, December 2; I will post
a solution on Monday.

• Project #3 will be assigned Wednesday; more details to follow.

• Lab #5 will be assigned Monday, November 30. It will cover Rust and SQL.

Schedule for Remainder of Semester
• Monday, November 23 -- Self and JavaScript

• Wednesday, November 25 -- Thanksgiving break: NO CLASS

• Monday, November 30 -- Intro to SQL

• Wednesday, December 2 -- Intro to Rust

• Monday, December 7 -- Final Exam Review

• Wednesday, December 9 -- Final Exam

Final Exam Details
• Final exam will be on Wednesday, December 9.

• Exam will be posted at midnight and must be turned in by 11:59:59pm PST.

• Final exam is worth 20% of your class grade.

• Format is exactly the same as the midterm (take-home, open note and open book
[but restricted to the books and papers used in this course], available for 24 hours);
there will be both free-response questions and programming segments.

• Final exam is cumulative, but there will be a greater weight on post-midterm topics.

• All topics excluded from the midterm will remain excluded on the final exam.

• There won't be a practice final exam, but I will share a list of topics no later than
December 2.

Prototype-Based Programming

• In traditional object-oriented programming, classes define objects.

public class Point {
 private int x, y;

 public Point(int x, int y) {
 self.x = x;
 self.y = y;
 }

 public void add(Point second) {
 x = second.getX();
 y = second.getY();
 }
}

Point x = new Point(3,4);
Point y = new Point(5,6);
x.add(y);

• Object-oriented programming languages provide inheritance, creating a hierarchy of classes.

public class Point {
 private int x, y;

 public Point(int x, int y) {
 self.x = x;
 self.y = y;
 }

 public void add(Point second) {
 x = second.getX();
 y = second.getY();
 }
} Point x = new Point(3,4);

Point y = new Point(5,6);
x.add(y);

public class GUIPoint extends Point {
 private Color color;

 public GUIPoint(int x, int y, Color color) {
 super(x, y);
 self.color = color;
 }
}

GUIPoint inherits Point

• A nice advantage of class-based programming languages is that each object
has clear definitions regarding its state (e.g., variables) and its behavior (e.g.,
methods/messages).

• Class-based programming languages can also be useful in type-checking
situations in statically-typed programming languages.

• In an environment where we are describing objects with fixed behavioral
characteristics, class-based object-oriented programming seems to be a
natural fit.

• Consider modeling situations such as driving a car, or making a transaction at
a bank.

• Generally, during the lifetime of the object (such a car), its behavior (in
terms of the steps needed to carry out a procedure) is most likely not going
to change.

However, not all objects behave the
same throughout their lifetimes.

Consider the metamorphosis of an insect.

caterpillar

cocoon

moth
egg

Consider the metamorphosis of an insect.

caterpillar

cocoon

moth
egg

In a live system where objects have long lifetimes, objects could potentially change
their behavior and exhibit new behaviors (or lose old behaviors).

Limitations of Class-Based OO Programming
• In a class-based object-oriented system, how would we deal with new

methods added over time?

• For example, moths can reproduce, but eggs, caterpillars, and cocoons
cannot.

One way of dealing with these types of
issues is adopting class-less object-

oriented programming.

In a sense, class-less object-oriented programming
seems to be the logical conclusion of everything being
an object, including classes. If you think about it really

hard, are classes truly necessary?

Why are objects defined by their classes?
Why have classes to begin with?

NOTE: This conversation is historically
inaccurate.

Deep	Thoughts
by Karl Marx

It turns out that we don't need classes
to do object-oriented programming.

Self

The Self Programming Language
• Created by David Ungar.

• His PhD thesis, under advisor David Patterson of RISC
fame, was on writing a high-performance Smalltalk
environment.

• Self was originally done at Stanford University back when
Ungar was a professor, before he left Stanford to go to
Sun Microsystems, where he continued working on Self.

• Self is heavily influenced by Smalltalk

• Syntax is very similar, and everything is an object.

• Like most traditional Smalltalk implementations, Self is
also a self-contained GUI environment.

• Self has no support for classes.

The Self Programming Language
• Objects consists of slots.

• This "slot" terminology is also in the Common Lisp Object System and Dylan (a
language developed by Apple in the 1990s that is influenced by Lisp but has a
conventional Algol-style syntax).

• Slots store either state (the equivalent of variables) or behavior (methods).

• There are no variables; instead, if an object wants to maintain state, it sends a
message to itself (e.g., self x: 5 creates a slot named x and stores the value 5).

• This is how Self got its name.

• Instead of constructing objects from class constructors, in Self we clone objects
by copying other objects.

Inheritance in Self
• In Smalltalk and other class-based object-oriented programming languages,

each object contains a pointer to its class.

• In Self, each object contains a pointer to its parent object.

• To perform inheritance in Self, "[i]f an object receives a message and it has no
matching slot, the search continues via a parent pointer" [Ungar and Smith
1991, p. 3]

4 UNGAR AND SMITH

(class)

(superclass)

(inst vars)

(methods)

(name) Point

class, x, y

how to

(class)

(superclass)

(inst vars)

(methods)

(name) Object

nil

(none)

(class)

(y)

(x) 3

5

7

9

+ add points

how toprint print objects

x

x:

y

y:

parent*

3

!

5

!

x

x:

y

y:

parent*

7

!

9

!

+

parent*

print

how to
add points

how to
print objects

SELF objectsSmalltalk

. . .

. . .

instances and classes

Figure 1. A comparison of Smalltalk instances and classes with SELF objects.

At the bottom of each figure are two point objects that have been created by a user program.

Each SELF point intrinsically describes
its own format, but appeals to another
object for any behavior that is shared
among points. In this example, the points
appeal to an object containing shared
behavior for points. That object in turn
appeals to another (on top) for behavior
that is shared by all objects. This “root”
object fully describes its own format and
behavior, so it has no parent.

Each Smalltalk point contains a class
pointer and x and y coordinates. The
class Point supplies both format (a list of
instance variables) and behavior infor-
mation (a collection of methods) for
points. Additional format and behavior
information is inherited from Object via
Point’s superclass link. Each of the two
classes in turn must appeal to other
classes (not shown) for their format and
behavior.

Credits: Ungar and Smith 1991, p. 4

6 UNGAR AND SMITH

point

clone

(class)

(superclass)

(inst vars)

(methods)

(name) Point

class, x, y

how to

(class)

(inst vars)

(methods)

(superclass)

name,

new make objects

x

x:

y

y:

parent*

0

!

0

!

parent*

how to
clone objects

Creating a SELF object

. . .

. . .

Creating a Smalltalk object

. . .

superclass,
inst vars,
methods

(class)

(inst vars)

(methods)

(superclass)

name,

. . .

superclass,
inst vars,
methods

To create a new point in SELF, the clone
message is sent to the prototypical point.
The clone method copies its receiver.
Because the point slot resides in the root,
any object can create a point.

. . .

. . .

Figure 2. Object creation in Smalltalk and in SELF.

To create a new point in Smalltalk, the
new message is sent to the class Point.
The new method—found in Point’s
class’s superclass—uses information in
its receiver (Point) to define the size and
format of the new object.

Credits: Ungar and Smith 1991, p. 6

JavaScript: A Lecture and a
Demo

Credit: https://www.reddit.com/r/ProgrammerHumor/comments/621qrt/javascript_the_good_parts/

JavaScript is one of the most
deployed languages on Earth.

Yet JavaScript is the blunt of
many jokes.

What's 2 + "3" in JavaScript?

Begin Rant and Demo

Question and Answer Session

