Introduction to SQL CS 152 -- Programming Paradigms San José State University

Michael McThrow November 30, 2020

Domain-Specific Languages (DSLs)

- Domain-specific languages (DSLs) are targeted to specific environments as opposed to general use.
- Examples of DSLs:
 - Markup languages for describing documents (e.g., HTML, XML, TeX, LaTeX).
 - Query languages (e.g., SQL, Datalog, XPath, GraphQL, Cypher)
 - Macro languages (e.g., C preprocessor, Microsoft Excel macros)
- Advantage of DSLs:
- Easier to express certain problems (it's helpful to think of languages as *interfaces*). • Many DSLs tend to be *declarative*, although this is not a requirement.

Until now, we have been learning general-purpose programming languages.

Remember Lab #1? You've already implemented two DSLs: both for computing arithmetic expressions.

STEPS Toward the Reinvention of Programming (This won't be on the final, but I find this work interesting)

- Created by researchers at Viewpoints Research Institute, a research institute founded by Alan Kay (of Xerox PARC fame) in 2001 and remained in operation until 2018.
- **Problem:** The software stack required to implement a full-featured GUI operating system is too big for one person to fully comprehend.
 - The Linux kernel itself is millions of lines of code.
 - Imagine adding command-line utilities, either X11 or Wayland, and a full-featured desktop such as KDE or GNOME....
- Solution: Compose system by building components implemented in domain-specific languages.
 - Nile implements an entire 2D graphics system in 495 lines of code. lacksquare
 - An entire TCP/IP system, which normally requires 10,000 lines of code (typically written in C), was written using less than 200 lines of code in another custom domain-specific language.
 - Entire system was written in just 20,000 lines of code.

Warning: SQL is large. To cover the entirety of SQL and relational databases will require its own course.

SQL

- Pronounced either "S-Q-L" or "Sequel"
- but was changed since the name was already trademarked.
- Originally designed by IBM in the 1970s for the System R database, the world's first relational database implementation.
- SQL is declarative.

Stands for "Structured Query Language" and was originally called SEQUEL

SQL

- are not limited to:
 - Oracle Database
 - Microsoft SQL Server
 - MySQL (MariaDB is a fork of MySQL)
 - PostgreSQL
 - Google Spanner (a globally-distributed database)

 SQL has since become the standard querying language for many relational databases, many of which have SQL in their names. Examples include, but

functional programming

logic programming

SQL and other relational database query languages

is the reification of

predicate logic

relational algebra

Relational Databases

- Inside a relational database, data is stored in tables called relations.
 - The terminology *table* and *relation* are generally interchangeable (though there are some nuances when studying relational algebra).
- Each relation has a schema associated with it.
 - Columns describe fields.
 - Each column has a type associated with it.
- Structured data is any type of data that has a schema associated with it.

Persons

id (integer)	first_name (varchar(20))	last_name (var_char(20))	joined (date)
7213	Bill	Gates	1975
23523	Elon	Musk	2005
124124	Satoshi	Nakamoto	2007
35345	Santa	Claus	1845

purchase_id (integer)	person_id (integer)	product_id (integer)	quantity (integer)
100	7213	1246	2
101	7213	1434	3
102	124124	132	4
103	35345	65	1

Purchases

Some SQL Pitfalls

- While there are standardized versions of SQL, each DBMS (database) management system) has its own modifications to SQL syntax.
 - vice versa.

What may work in PostgreSQL, for example, may not work in MySQL, and

Demo Using SQLite