
Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Programming Language Syntax

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

August 26, 2020

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Table of Contents

1 Syntax and Semantics

2 Grammar

3 Lexing, Parsing, and Abstract Syntax Trees

4 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Table of Contents

1 Syntax and Semantics

2 Grammar

3 Lexing, Parsing, and Abstract Syntax Trees

4 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on syntax. Monday’s lecture will focus on
semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on syntax. Monday’s lecture will focus on
semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on syntax. Monday’s lecture will focus on
semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on syntax. Monday’s lecture will focus on
semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

How do we define the syntax of a programming language?

We
define the syntax of a programming language by a formal grammar.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

How do we define the syntax of a programming language? We
define the syntax of a programming language by a formal grammar.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Table of Contents

1 Syntax and Semantics

2 Grammar

3 Lexing, Parsing, and Abstract Syntax Trees

4 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Definition (Grammar (from Slonneger and Kurtz 1995))

A grammar < Σ,N,P,S > consists of four parts:

1 A finite set Σ of terminal symbols, the alphabet of the
language, that are assembled to make up the sentences in the
language.

2 A finite set N of nonterminal symbols or syntactic categories,
each of which represents some collection of subphrases of the
sentences.

3 A finite set P of productions or rules that describe how each
nonterminal is defined in terms of terminal symbols and
nonterminals. The choice of nonterminals determines the
phrases of the language to which we ascribe meaning.

4 A distinguished nonterminal S , the start symbol, that specifies
the principal category being defined—for example, sentence or
program.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Chomsky Hierarchy

Noam Chomsky, famous linguist and political writer, developed the
Chomsky hierarchy of formal languages to classify them based on
how restrictive their production rules P are.

Type Grammar

Type 0 Unrestricted grammar
Type 1 Context-sensitive grammar
Type 2 Context-free grammar
Type 3 Regular grammar

The higher the type, the more restrictive the grammar’s
production rules are.

Also, less restrictive grammatical types encompass more
restrictive grammatical types (e.g., the set of Type 1
grammars includes Type 2 and Type 3 grammars).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Chomsky Hierarchy

Noam Chomsky, famous linguist and political writer, developed the
Chomsky hierarchy of formal languages to classify them based on
how restrictive their production rules P are.

Type Grammar

Type 0 Unrestricted grammar
Type 1 Context-sensitive grammar
Type 2 Context-free grammar
Type 3 Regular grammar

The higher the type, the more restrictive the grammar’s
production rules are.

Also, less restrictive grammatical types encompass more
restrictive grammatical types (e.g., the set of Type 1
grammars includes Type 2 and Type 3 grammars).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Chomsky Hierarchy

Noam Chomsky, famous linguist and political writer, developed the
Chomsky hierarchy of formal languages to classify them based on
how restrictive their production rules P are.

Type Grammar

Type 0 Unrestricted grammar
Type 1 Context-sensitive grammar
Type 2 Context-free grammar
Type 3 Regular grammar

The higher the type, the more restrictive the grammar’s
production rules are.

Also, less restrictive grammatical types encompass more
restrictive grammatical types (e.g., the set of Type 1
grammars includes Type 2 and Type 3 grammars).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Chomsky Hierarchy

Noam Chomsky, famous linguist and political writer, developed the
Chomsky hierarchy of formal languages to classify them based on
how restrictive their production rules P are.

Type Grammar

Type 0 Unrestricted grammar
Type 1 Context-sensitive grammar
Type 2 Context-free grammar
Type 3 Regular grammar

The higher the type, the more restrictive the grammar’s
production rules are.

Also, less restrictive grammatical types encompass more
restrictive grammatical types (e.g., the set of Type 1
grammars includes Type 2 and Type 3 grammars).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Backus-Naur Form

Backus-Naur Form is a widely-used notation for specifying
programming language grammars.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Backus-Naur Form

<declaration> ::= var <variable list> : <type>;

declaration is an example of a production rule in P.

var, :, and ; are terminal symbols in the set Σ.

<variable list> and <type> refer to production rules of
that name.

Definitions can be recursive, and production rules can have
multiple parts, with each part delimited by |.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Backus-Naur Form

<declaration> ::= var <variable list> : <type>;

declaration is an example of a production rule in P.

var, :, and ; are terminal symbols in the set Σ.

<variable list> and <type> refer to production rules of
that name.

Definitions can be recursive, and production rules can have
multiple parts, with each part delimited by |.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Example: Defining Numbers in BNF

<number> ::= <prefix><digit list>

| <prefix><digit list>.<digit list>

| <digit list>

| <digit list>.<digit list>

<prefix> ::= + | -

<digit list> ::= <digit>

| <digit><digit list>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Example: Defining Numbers in BNF

This is an alternative definition if we define an empty string as a
valid prefix for the number (e.g., for representing non-negative
numbers).

<number> ::= <prefix><digit list>

| <prefix><digit list>.<digit list>

<prefix> ::= + | - | EMPTY

<digit list> ::= <digit>

| <digit><digit list>

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Exercise: How would you extend the definition of a number to
specify hexadecimal integers (e.g., 0xFA)?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Here is a possibility:

<number> ::= 0x<hex-digits>

<hex-digits> ::= <hex-digit> | <hex-digit><hex-digits>

<hex-digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| A | B | C | D | E | F

Note that a hexadecimal numeral is unsigned and thus cannot be
preceded by a −.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Regular Grammars

Definition (Regular Grammar)

A regular grammar only allows production rules in the form of the
following:

1 Terminals (e.g., <prefix> ::= + | -)

2 Terminal followed immediately by a single non-terminal (e.g.,
<binary> ::= 0 | 1 | 0 <binary> | 1 <binary> is a
right-terminal rule)

Note: Grammars where all production rules have a non-terminal
plus a terminal to its right are also regular (these are left-terminal
rules). However, P cannot have both left-terminal and
right-terminal rules.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Regular Languages

Definition (Regular Language)

A regular language is a language that can be defined by a regular
grammar.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Regular Expressions

We can use regular expressions to describe regular languages, as an
alternative to Backus-Naur form.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Context-Free Grammars

Definition (Context-Free Grammar)

A context-free grammar is one where all rules have a non-terminal
on the left-hand side of ::= in the rule definition.

The number example is an example of a context-free grammar.
Also, all regular grammars are context-free.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Context-Free Grammars

Definition (Context-Free Grammar)

A context-free grammar is one where all rules have a non-terminal
on the left-hand side of ::= in the rule definition.

The number example is an example of a context-free grammar.
Also, all regular grammars are context-free.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Example of a Grammar that Is Not Context Free

<thing> b ::= b <thing>.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Extended Backus-Naur Form

There are some recursive patterns that frequently occur when
defining grammars in BNF:

<digit list> ::= <digit> | <digit><digit list>

Extended Backus-Naur Form (EBNF) borrows from the syntax of
regular expressions to simplify BNF production rules.

<digit list> ::= <digit>+

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Extended Backus-Naur Form

There are some recursive patterns that frequently occur when
defining grammars in BNF:

<digit list> ::= <digit> | <digit><digit list>

Extended Backus-Naur Form (EBNF) borrows from the syntax of
regular expressions to simplify BNF production rules.

<digit list> ::= <digit>+

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Extended Backus-Naur Form

There are some recursive patterns that frequently occur when
defining grammars in BNF:

<digit list> ::= <digit> | <digit><digit list>

Extended Backus-Naur Form (EBNF) borrows from the syntax of
regular expressions to simplify BNF production rules.

<digit list> ::= <digit>+

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Does defining a programming language using a context-free
grammar mean that the language doesn’t have ambiguities?

No.
Ambiguities can still happen, which can be a problem when parsing
the code.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Does defining a programming language using a context-free
grammar mean that the language doesn’t have ambiguities? No.
Ambiguities can still happen, which can be a problem when parsing
the code.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

The Dangling else Problem

Dating all the way back to ALGOL 60, many programming
languages suffer from ambiguous else statements due to how
if...else.... statements are defined.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Definition of if Statement in C

Adapted from The C Programming Language, 2nd Edition by
Brian Kernighan and Dennis Ritchie (1989):

<selection-statement> ::= if (<expression>) <statement>

| if (<expression>) <statement> else <statement>

| switch (<expression>) <statement>

Note that a <selection-statement> is a <statement>. Also,
note that many “bracket-style” languages influenced by C, such as
C++, Java, and JavaScript, define if statements exactly the same
as C.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Dangling else in C

if (condition1)

if (condition2)

printf("Yay!");

else

printf("No!");

Possible interpretations of the above code:

if (condition) {

if (condition2)

printf("Yay!");

else

printf("No!");

}

if (condition) {

if (condition2)

printf("Yay!");

} else

printf("No!");

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Dangling else in C

if (condition1)

if (condition2)

printf("Yay!");

else

printf("No!");

Possible interpretations of the above code:

if (condition) {

if (condition2)

printf("Yay!");

else

printf("No!");

}

if (condition) {

if (condition2)

printf("Yay!");

} else

printf("No!");

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Exercise: If you were to redesign C, how would you solve the
dangling else problem?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Operator Precedence

Another “gotcha” that comes up with defining a grammar for a
programming language is operator precedence, which is the order
in which operations are to be evaluated.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Summary

Syntax and semantics define a programming language.

Grammar defines the syntax of a programming language.

We can define programming languages using context-free
grammars (but not all programming languages are defined by
them).

We can use BNF to define programming language grammars.

Grammars may have semantic ambiguities, such as the
dangling else problem.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Table of Contents

1 Syntax and Semantics

2 Grammar

3 Lexing, Parsing, and Abstract Syntax Trees

4 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

So, suppose you have source code and a grammar expressed in
BNF. How does a program “interpret” the source code using the
grammar?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

The Parsing Pipeline

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Lexical Analyzer

The lexical analyzer, also known as the lexer, splits a string into
symbols called tokens, and then annotates them based on their
syntactical meaning.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Example of Lexical Analysis

Input:

var fofx = a*x**2 + b*x + c;

Output:

[("keyword", "var"), ("identifier", "fofx"),

("operator", "="), ("identifier", "a"),

("operator", "*"), ("identifier", "x"),

("operator", "**"), ("literal", "2"),

("operator", "+"), ("identifier", "b"),

("operator", "*"), ("identifier", "x"),

("operator", "+"), ("identifier", "c"),

("symbol", ";")]

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Whitespace and Lexical Analysis

In some languages, such as C, whitepace that is not inside of
a string constant is insignificant as long as keywords are
separated.

There are some languages such as Python where whitespace is
syntactically important.

Takeaway: Dealing with whitespace is not as simple as calling
strtok() or split() on the string.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Parsing

Parsing is a complex topic in its own regard.

The textbook Parsing Techniques, A Practical Guide (2nd
Edition) by Grune and Jacobs (2008) is 622 pages long.

We won’t be focusing on the intracies of parsing algorithms in
this course. Instead, we will be enlisting the help of parser
generators to parse context-free grammars.

A parser outputs a parse tree. If we remove extraneous
information from the tree, then we end up with an abstract
syntax tree, which we can traverse for the purposes of either
evaluating the tree (i.e., performing the operations described
in the tree) or generating executable code (which a compiler
does).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Visual Representation of an Abstract Syntax Tree

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Programmatic Representation of an Abstract Syntax Tree

AST ast =

new AddExpr(new Number(2),

new MultExpr(new Number(3),

new Number(5)));

Note that for this to compile, the AddExpr, MultExpr, and
Number classes need to implement the AST interface.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Evaluating an Abstract Syntax Tree

Calling ast.eval() will evaluate the abstract syntax tree by
recursively evaluating all of its subtrees, eventually resulting in the
answer 17.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Summary of the Parsing Pipeline

Lexical analyzer splits a string containing source code into
tokens.

Tokens are then fed to a parser to generate a parse tree.

Parse tree is then converted to an abstract syntax tree.

We can then use the abstract syntax tree to either evaluate
the program (interpreter) or to generate code (compiler).

Parser generators like ANTLR are very convenient tools for
parsing grammars.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Table of Contents

1 Syntax and Semantics

2 Grammar

3 Lexing, Parsing, and Abstract Syntax Trees

4 Preview of Monday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

Syntax and Semantics Grammar Lexing, Parsing, and Abstract Syntax Trees Preview of Monday’s Lecture

Preview of Monday’s Lecture

On Monday we will be covering operational semantics and the
lambda calculus. Both of these are very handy theoretical tools for
programming language analysis.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Programming Language Syntax

	Syntax and Semantics
	Grammar
	Lexing, Parsing, and Abstract Syntax Trees
	Preview of Monday's Lecture

