
Semantics Lambda Calculus Preview of Wednesday’s Lecture

Operational Semantics and the Lambda Calculus

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

August 31, 2020

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

WARNING: This lecture is going to be more mathematical than
usual.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Table of Contents

1 Semantics

2 Lambda Calculus

3 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Table of Contents

1 Semantics

2 Lambda Calculus

3 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Syntax and Semantics

All programming languages have syntax and semantics.

Definition (Syntax)

“Syntax refers to the ways symbols may be combined to create
well-formed sentences (or programs) in the language” [Slonneger
and Kurtz, Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach, 1995].

Definition (Semantics)

“Semantics reveals the meaning of syntactically valid strings in a
language” [Slonneger and Kurtz 1995].

This lecture will focus on semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

How do we define the semantics of a programming language?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

We could point users to the code that implements a reference
interpreter or compiler of that language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

But there are problems with the “show me the code” approach to
semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Problems with “Show Me the Code” Semantics

What if the code has errors?

What happens when someone decides to write a different
implementation of the language?

What happens when the language gets ported to a different
architecture or operating system?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Problems with “Show Me the Code” Semantics

What if the code has errors?

What happens when someone decides to write a different
implementation of the language?

What happens when the language gets ported to a different
architecture or operating system?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Problems with “Show Me the Code” Semantics

What if the code has errors?

What happens when someone decides to write a different
implementation of the language?

What happens when the language gets ported to a different
architecture or operating system?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Problems with “Show Me the Code” Semantics

What if the code has errors?

What happens when someone decides to write a different
implementation of the language?

What happens when the language gets ported to a different
architecture or operating system?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Another approach to defining the semantics of a language is
writting official documentation describing in human language the
details of the language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

This documentation can take the form of

Reports

Books (such as The C Programming Language by Brian
Kernighan and Dennis Ritchie)

Standards published by a standards agency such as ANSI

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Unfortunately, even with standards, there can still be problems that
arise with human-language descriptions of programming language
semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

An alternative to natural language-defined semantics is formal
semantics, which makes it possible to reason about the semantics
of a programming language in a logical, mathematical fashion.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Why Formal Semantics?

Facilitates the ability to mathematically prove specific
properties of the language.

Provides a degree of precision that natural-language semantic
descriptions couldn’t provide.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Operational Semantics

Definition (Operational Semantics)

“[S]pecifies the behavior of a programming language by defining a
simple abstract machine for it” [Pierce, Types and Programming
Languages, 2002].

Our example will demonstrate big-step semantics, also known as
natural semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Operational Semantics

Definition (Operational Semantics)

“[S]pecifies the behavior of a programming language by defining a
simple abstract machine for it” [Pierce, Types and Programming
Languages, 2002].

Our example will demonstrate big-step semantics, also known as
natural semantics.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Arith Programming Language [Pierce 2002]

<t> ::= true

| false

| if <t> then <t> else <t>

| 0

| succ <t>

| pred <t>

| iszero <t>

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Examples of Valid Expressions in Arith

true

succ 0

pred 0

succ succ pred succ pred 0

if iszero succ pred 0 then true else false

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Examples of Semantically Incorrect Expressions in Arith

Note: these expressions are syntactically valid, but semantically
incorrect.

iszero false

if 0 then true else false

succ true

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Big-Step Definition of Arith [Pierce 2002, p. 43]

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

One nice characteristic of big-step semantics is that it is easy to
write interpreters given an abstract syntax tree and a semantic
definition of the language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Are there languages defined using operational semantics?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Scheme R6RS is defined via operational semantics; check out
Appendix A of The Revised6 Report on the Algorithmic Language
Scheme.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Summary

Semantics defines the meaning of sentences in a programming
language.

Formal semantics allow us to define programming languages
in a logical, mathematical fashion.

Operational semantics specifies the behavior of a programming
language by specifying an artificial machine for it.

Big-step operational semantics is ideal for programming
language implementers.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Table of Contents

1 Semantics

2 Lambda Calculus

3 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

This is the very beginning of our transition from procedural
programming to functional programming, which will be our focus
for the next six weeks.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

I like to think about the development of programming languages as
two schools of thought: one rooted in a hardware-oriented point of
view, and one rooted in a mathematical point of view.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Procedural programming was developed largely under pragmatic
concerns: how do we save ourselves from the tedium of performing
low-level programming tasks?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Functional programming, however, approaches programming from
a different point of view: how do we express our programs as
mathematical functions, and how do we run them efficiently on
computer hardware?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Von Neumann computer architectures can be thought of as the
reification of the Turing machine model of computation.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Functional programming languages can be thought of as the
reification of the lambda calculus.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Some Background

In the beginning of the 20th century there were a lot of
research efforts by mathematicians and logicians in the area of
metamathematics.

Hilbert’s program (by mathematician David Hilbert) was an
initiative to see if all of the theorems of mathematics can be
built upon a set of axioms that were proven to be consistent.

However, logician Kurt Gödel proved that it is impossible to
prove the consistency of axioms within the same logical
system; this result is known as Gödel’s Second Incompleteness
Theorem.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Some Background

Logician Alonzo Church formulated the lambda calculus as
part of his research on metamathematics.

The purpose of the lambda calculus is to develop a
mathematical model for expressing computation.

Theoretically, any computable function can be expressed as a
lambda calculus expression.

In addition, the Church-Turing Thesis is a hypothesis stating
that any function expressed by the lambda calculus is
computable by a Turing machine.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Lambda Calculus Syntax

<λexpr>::= <var>

|λ <var> . <λexpr>

|(<λexpr> <λexpr>)

(1)

The first rule represents a variable. The second represents an
abstraction, which is a function definition. The third represents an
application, which is a function call.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Abstraction

λ <var> . <λexpr> (2)

<var> is the function parameter and <λexpr> is the function
body. All functions in the lambda calculus only have one
parameter, and all functions are anonymous.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Application

(f x) (3)

Call the function f with argument x ; equivalent to f (x) in
standard mathematical notation. This type of notation is known as
prefix notation.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λu.((v λu.u) λx .y λy .(u z))

No. The reason why it is not syntactically correct is because an
application can only have one argument; there are two in the
application that is part of the body of the above abstraction.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λu.((v λu.u) λx .y λy .(u z))

No.

The reason why it is not syntactically correct is because an
application can only have one argument; there are two in the
application that is part of the body of the above abstraction.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λu.((v λu.u) λx .y λy .(u z))

No. The reason why it is not syntactically correct is because an
application can only have one argument; there are two in the
application that is part of the body of the above abstraction.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λz .(λu.λy .v (z (y z)))

Yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λz .(λu.λy .v (z (y z)))

Yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λx .λy .(λu.v λu.z)

Yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λx .λy .(λu.v λu.z)

Yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λv ((v u) (λv .y (v y)))

No. A λ and a variable must be followed by a dot.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Is this lambda expression syntactically correct?

λv ((v u) (λv .y (v y)))

No. A λ and a variable must be followed by a dot.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Variable Scoping in the Lambda Calculus

If a variable x occurs within the body t of an abstraction
λx .t, then x is bound, and λx is a binder whose scope is t.

If x is not bound by an enclosing abstraction on x , then it is
free.

If a term has no free variables, it is closed. A combinator is a
closed term.

Example: In the λ-expression (λy .x y), x is free and y is bound.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Variable Scoping in the Lambda Calculus

If a variable x occurs within the body t of an abstraction
λx .t, then x is bound, and λx is a binder whose scope is t.

If x is not bound by an enclosing abstraction on x , then it is
free.

If a term has no free variables, it is closed. A combinator is a
closed term.

Example: In the λ-expression (λy .x y), x is free and y is bound.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Variable Scoping in the Lambda Calculus

If a variable x occurs within the body t of an abstraction
λx .t, then x is bound, and λx is a binder whose scope is t.

If x is not bound by an enclosing abstraction on x , then it is
free.

If a term has no free variables, it is closed. A combinator is a
closed term.

Example: In the λ-expression (λy .x y), x is free and y is bound.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Variable Scoping in the Lambda Calculus

If a variable x occurs within the body t of an abstraction
λx .t, then x is bound, and λx is a binder whose scope is t.

If x is not bound by an enclosing abstraction on x , then it is
free.

If a term has no free variables, it is closed. A combinator is a
closed term.

Example: In the λ-expression (λy .x y), x is free and y is bound.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Evaluating Lambda Calculus Expressions

Here are some simple examples:

x ⇒ x

(λx .x y) ⇒ y

λx .x ⇒ λx .x

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

However, not all evaluations are straightforward applications.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Function applications often involve substitutions of terms.
However, we must make sure that no free variables become
mistakenly bound as a result of substitution, or else we cause the
problem of variable capture.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

To avoid variable capture, we perform α-conversion, which is
renaming in such a way where the semantic meaning of a function
abstraction does not change. We accomplish this by using a new
variable name, one that does not occur in the body of the function
being α-converted.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Substitution Rules for λ-Expressions

Here are some simple rules:

v [v → E1] = E1

When v 6= x , x [v → E1] = x

(EA EB)[v → E1] = ((EA[v → E1]) (EB [v → E1]))

(λv .E )[v → E1] = (λv .E )

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Substitution Rules for Abstractions when x 6= v

If x is not free in E1, then (λx .E )[v → E1] = λx .(E [v → E1])

Else, we need to perform an α-conversion, which is
(λx .E )[v → E1] = λz .(E [x → z ][v → E1]) where z 6= v .

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

β-redex

Definition (β-redex)

A β-redex is an application where the first term is an abstraction
(e.g., (λx .x y) is a β-redex, but not (x y).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

β-reduction

Definition (β-reduction)

Given a β-redex, if v is a variable and E and E1 are λ-expressions,
then

(λv .E E1) ⇒β E [v → E1]

provided that the substitution E [v → E1] is carried out according
to the rules for a safe substitution.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Evaluating λ-expressions

We can evaluate lambda expressions by repeatedly applying
β-reductions until all β-redexes have been removed.

The resulting lambda expression would be in normal form.

However, not all lambda expressions are reducible to normal
form.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Evaluating λ-expressions

We can evaluate lambda expressions by repeatedly applying
β-reductions until all β-redexes have been removed.

The resulting lambda expression would be in normal form.

However, not all lambda expressions are reducible to normal
form.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Lambda Expression Evaluation Strategies

In full β-reduction, any redex may be reduced at any time.

In normal order reduction, the leftmost, outermost redex is
always reduced first.

In applicative normal order reduction, the leftmost, innermost
redex is always reduced first.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Call by Name Semantics

Call by name semantics is equivalent to normal order
reduction, except there are no reductions inside abstractions.

Used in ALGOL-60.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Call by Value Semantics

Call by value semantics is equivalent to applicable order
reduction, except no redex in a λ expression that is inside an
abstraction is reduced.

Used in the vast majority of programming languages today.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

Table of Contents

1 Semantics

2 Lambda Calculus

3 Preview of Wednesday’s Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus



Semantics Lambda Calculus Preview of Wednesday’s Lecture

On Wednesday, we will begin our lessons on Scheme, a functional
programming language that is part of the Lisp family of
programming languages. Lisp can be thought of as a reification of
the lambda calculus, except it’s much easier to code in than the
lambda calculus. We will also cover the core tenets of functional
programming.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Operational Semantics and the Lambda Calculus


	Semantics
	Lambda Calculus
	Preview of Wednesday's Lecture

