
State and Mutation Environments Preview of Monday’s Lecture Project 1

State, Mutation, and Environments

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

September 16, 2020

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Table of Contents

1 State and Mutation

2 Environments

3 Preview of Monday’s Lecture

4 Project 1

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Table of Contents

1 State and Mutation

2 Environments

3 Preview of Monday’s Lecture

4 Project 1

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

State, Mutation, and Environments

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

What is State?

A program’s state is essentially what a program “memorizes”
throughout its lifetime.

A program’s state may be located in local and global
variables, function parameters, data referenced by pointers,
and even external sources (such as file systems, databases,
Web servers, etc.).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

What is State?

A program’s state is essentially what a program “memorizes”
throughout its lifetime.

A program’s state may be located in local and global
variables, function parameters, data referenced by pointers,
and even external sources (such as file systems, databases,
Web servers, etc.).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Functional Programming and State

One goal of functional programming style is to make programs
more mathematically tractable by emphasizing immutability
and reducing side effects.

A side effect means modifying the state outside of the current
scope.

Examples of side effects:

Modifying a global variable outside of global scope.
Updating a database that the program is connected to.
Accessing I/O devices (this includes reading)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Functional Programming and State

One goal of functional programming style is to make programs
more mathematically tractable by emphasizing immutability
and reducing side effects.

A side effect means modifying the state outside of the current
scope.

Examples of side effects:

Modifying a global variable outside of global scope.
Updating a database that the program is connected to.
Accessing I/O devices (this includes reading)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Functional Programming and State

One goal of functional programming style is to make programs
more mathematically tractable by emphasizing immutability
and reducing side effects.

A side effect means modifying the state outside of the current
scope.

Examples of side effects:

Modifying a global variable outside of global scope.
Updating a database that the program is connected to.
Accessing I/O devices (this includes reading)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Functional Programming and State

One goal of functional programming style is to make programs
more mathematically tractable by emphasizing immutability
and reducing side effects.

A side effect means modifying the state outside of the current
scope.

Examples of side effects:

Modifying a global variable outside of global scope.

Updating a database that the program is connected to.
Accessing I/O devices (this includes reading)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Functional Programming and State

One goal of functional programming style is to make programs
more mathematically tractable by emphasizing immutability
and reducing side effects.

A side effect means modifying the state outside of the current
scope.

Examples of side effects:

Modifying a global variable outside of global scope.
Updating a database that the program is connected to.

Accessing I/O devices (this includes reading)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Functional Programming and State

One goal of functional programming style is to make programs
more mathematically tractable by emphasizing immutability
and reducing side effects.

A side effect means modifying the state outside of the current
scope.

Examples of side effects:

Modifying a global variable outside of global scope.
Updating a database that the program is connected to.
Accessing I/O devices (this includes reading)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

However, certain tasks would be difficult to perform without
mutation and side effects.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Variable Mutation in Scheme

Scheme provides the set! function for mutating a variable.

It does not matter if the variable is local or global; set! will
modify it.

Note that it is conventional in Scheme for functions that
perform mutation to end in !.

Example: (set! x 10)

Equivalent to x = 10 in procedural programming languages.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Mutating cons Cells in Scheme

Scheme (but not Racket) provides the functions set-car! and
set-cdr! for modifying the first and second elements of a cons
cell, respectively.

Example:

#!r6rs

(import (rnrs) (rnrs mutable-pairs))

(define my-list (cons 1 ’()))

(set-car! my-list 5)

(set-cdr! my-list (cons 2 (cons 3 ’())))

; my-list now evaluates to ’(5 2 3)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Mutating cons Cells in Scheme

Scheme (but not Racket) provides the functions set-car! and
set-cdr! for modifying the first and second elements of a cons
cell, respectively.

Example:

#!r6rs

(import (rnrs) (rnrs mutable-pairs))

(define my-list (cons 1 ’()))

(set-car! my-list 5)

(set-cdr! my-list (cons 2 (cons 3 ’())))

; my-list now evaluates to ’(5 2 3)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

A Reminder for CS 152’s Scheme Assignments

We will be programming in functional style; therefore, set!,
set-car!, set-cdr!, and other mutation functions are banned in
this course.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Table of Contents

1 State and Mutation

2 Environments

3 Preview of Monday’s Lecture

4 Project 1

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

For the next few lectures, we will cover how to write interpreters
that evaluate Scheme expressions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

In Lab 1, you wrote evalators for arithmetic expressions written in
postfix (e.g., 3 5 * 10 -) and infix notation (e.g., 3 * 5 - 10).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Suppose we extended the infix calculator to support variables:

Calculator> x = 5

x = 5

Calculator> 2 * x

10

How would we implement this?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Suppose we extended the infix calculator to support variables:

Calculator> x = 5

x = 5

Calculator> 2 * x

10

How would we implement this?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

The calculator could maintain a data structure that maps
variable names to values.

(x = 5 results in storing key x with
value 5 in the map.)

When the interpreter visits a variable name (e.g., when
evaluating x), it then searches the map for a key with that
name.

If there is a key, the visitor returns the value associated with
that key (e.g., 2 * x becomes 2 * 5, which evaluates to 10).
If there is no key, the calculator returns an error.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

The calculator could maintain a data structure that maps
variable names to values. (x = 5 results in storing key x with
value 5 in the map.)

When the interpreter visits a variable name (e.g., when
evaluating x), it then searches the map for a key with that
name.

If there is a key, the visitor returns the value associated with
that key (e.g., 2 * x becomes 2 * 5, which evaluates to 10).
If there is no key, the calculator returns an error.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

The calculator could maintain a data structure that maps
variable names to values. (x = 5 results in storing key x with
value 5 in the map.)

When the interpreter visits a variable name (e.g., when
evaluating x), it then searches the map for a key with that
name.

If there is a key, the visitor returns the value associated with
that key (e.g., 2 * x becomes 2 * 5, which evaluates to 10).
If there is no key, the calculator returns an error.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Now, how do we deal with the introduction of user-defined
functions to our calculator?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

sqrt.calc -- Script for executing square root function

function sqrt(x)

return x ^ 0.5

end

x = sqrt(5)

Some implementation challenges arise, namely:

How do we define the function?

How do we make sure that different scopes do not conflict
with each other?

A simple map is not going to do anymore. Instead, we maintain
environments in order to deal with these scoping issues.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

sqrt.calc -- Script for executing square root function

function sqrt(x)

return x ^ 0.5

end

x = sqrt(5)

Some implementation challenges arise, namely:

How do we define the function?

How do we make sure that different scopes do not conflict
with each other?

A simple map is not going to do anymore. Instead, we maintain
environments in order to deal with these scoping issues.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

sqrt.calc -- Script for executing square root function

function sqrt(x)

return x ^ 0.5

end

x = sqrt(5)

Some implementation challenges arise, namely:

How do we define the function?

How do we make sure that different scopes do not conflict
with each other?

A simple map is not going to do anymore. Instead, we maintain
environments in order to deal with these scoping issues.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

sqrt.calc -- Script for executing square root function

function sqrt(x)

return x ^ 0.5

end

x = sqrt(5)

Some implementation challenges arise, namely:

How do we define the function?

How do we make sure that different scopes do not conflict
with each other?

A simple map is not going to do anymore. Instead, we maintain
environments in order to deal with these scoping issues.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

sqrt.calc -- Script for executing square root function

function sqrt(x)

return x ^ 0.5

end

x = sqrt(5)

Some implementation challenges arise, namely:

How do we define the function?

How do we make sure that different scopes do not conflict
with each other?

A simple map is not going to do anymore. Instead, we maintain
environments in order to deal with these scoping issues.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Environments

An environment is associated with a frame.

The interpreter maintains a mapping of environment names to
frames.

A frame is a data structure that consists of two elements:

1 A mapping of names to values.
2 The name of the enclosing environment, i.e., the environment

which scope encompasses this environment.

The global environment is the top-most environment in the
program; nothing encompasses it. The global environment
also contains definitions of system-defined names.

An environment corresponds to a level of scope in the
program.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Examples of Environments (in supplemental slide deck)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Key Takeaways about Environments

Evaluating symbols such as x and PI require looking up
environments, starting from the current environment and
potentially searching each encompassing environment.

The define primitive function assigns names to values and
places them into the current environment.

Evaluating a function call creates a new environment.

Calling a function binds function parameters to the arguments
of the function call in the calling environment.

Environments only last for as long as its corresponding
function call is still running. The only exception is the global
environment, which lasts for as long as the interpreter runs.

The global environment contains names of primitive functions
that are built into the language that cannot be expressed as
libraries.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

What Are Closures?

A closure is a higher-order function that has access to the
environment in which it was created.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Example of a Closure

; Borrowed from Wikipedia

(define (h x)

(lambda (y) (+ x y)))

((h 1) 2)

The reason why the above works is because the lambda that has
the y parameter inherits the environment of its parent function
definition.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Example of a Closure

; Borrowed from Wikipedia

(define (h x)

(lambda (y) (+ x y)))

((h 1) 2)

The reason why the above works is because the lambda that has
the y parameter inherits the environment of its parent function
definition.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Table of Contents

1 State and Mutation

2 Environments

3 Preview of Monday’s Lecture

4 Project 1

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Now that we know about environments, we can now discuss
interpreters.

REPL stands for:

1 Read – parse the input expression
2 Evaluate – evaluate the parsed expression
3 Print – print the evaluated result
4 Loop – wait for another expression to read, then start at Read

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

The core evaluation rules of Lisp’s primitive functions are quite
simple, yet profound since they are the bedrock of so many useful
computations. Alan Kay, creator of the Smalltalk programming
language, called them “the Maxwell equations of software.” These
will be covered in the next lecture.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Table of Contents

1 State and Mutation

2 Environments

3 Preview of Monday’s Lecture

4 Project 1

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

State and Mutation Environments Preview of Monday’s Lecture Project 1

Your task for Project 1 is to write a Scheme metacircular
interpreter; i.e., a Scheme interpreter written in Scheme. Project 1
is due October 2, 2020 at 11:59pm.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

State, Mutation, and Environments

	State and Mutation
	Environments

