
Project #2 – Writing a Basic Prolog Interpreter
CS 152 Section 5 – Fall 2020
Michael McThrow
San José State University

Introduction
Your task for Project #2 is to write a basic Prolog interpreter that reads in a Prolog source code file that
contains facts and accepts queries from the command line.

For example, suppose you have a source code file named pokemon.prolog that contains the following
facts:

evolution(bulbasaur,ivysaur).
evolution(ivysaur,venusaur).
evolution(charmander,charmeleon).
evolution(charmeleon,charizard).
evolution(squirtle,wartortle).
evolution(wartortle,blastoise).

grass(bulbasaur).
grass(ivysaur).
grass(venusaur).

poison(bulbasaur).
poison(ivysaur).
poison(venusaur).

fire(charmander).
fire(charmeleon).
fire(charizard).

flying(charizard).

water(squirtle).
water(wartortle).
water(blastoise).

Your goal is to implement a program that accepts queries with the following prompt:

prolog> evolution(bulbasaur,ivysaur)?
true.
prolog> evolution(bulbasaur,X)?
X = ivysaur.

prolog>

You need to implement support for the following features in addition to whatever is implied in the
above examples:

• Rules (including the :- syntax and conjunctive queries on the right-hand side).
• Conjunctive queries (e.g., fire(X),flying(X)? should result in X = charizard.)
• Unification
• Lists

Please use the resolution and unification algorithms described in The Art of Prolog.

Do not worry about adding support for numbers, type predicates, cuts, negation, and other advanced
features. The only features that we will need to concern ourselves with are the features from the first
six chapters of The Art of Prolog.

Rules
• Please stick to the project specification regarding input formats. I reserve the right to

deduct points for implementations that deviate from the specification.

• You may choose to work with a partner enrolled in this class for this assignment. This is

entirely optional. Only one partner is responsible for turning in the assignment, but both
partners will earn the same grade. Place both partners’ names on your submission files.

• You may choose Java, C, C++, Python 3, or Scheme/Racket as your implementation languages.

If you choose to use Scheme/Racket, make sure your code runs in DrRacket using #lang
racket.

• If you choose to use Scheme/Racket, there are no restrictions on the use of mutation and side-

effects. Please write your code as you feel fit.

• Please refrain from using third-party libraries in your code. A third-party library is a library that

is not part of the standard of the language you choose. If you are unsure whether a library is a
third-party library or not, ask me.

• If you choose to use C or C++, keep in mind that your programs will be run in a Linux

environment when I grade them. Please code in such a way where your code can work on
either the GCC or Clang compilers.

• Your code must compile or be interpreted without any syntactical errors in order for it to

receive credit.

• No matter which implementation language you choose, your code must be runnable from the

command line, and your code must support the prompts exactly as described above. This is to
facilitate the use of automated testing tools for grading, which makes grading easier and
quicker.

• Your submission will be in a *.zip file that contains your source code, a README file

describing instructions for how to compile your code (if you used Java), a Makefile if you’re
using C or C++, and how to execute your code on the command line.

Grading Rubric
• I will be running your Prolog implementation against a battery of tests. If all of these tests pass

perfectly, you receive 100% before any applicable bonuses and penalties. If any of the tests
fail, you will receive deductions based on the severity of the error: minor mistakes will get
minor deductions, while major mistakes or omissions (e.g., no support for lists or conjunctions)
will receive deductions of at least 10% each.

• Recall that your code must compile or run without any syntactical issues. If I am unable to
compile your code, your assignment gets a grade of zero.

	Introduction
	Rules
	Grading Rubric

