
Syntax in Programming Languages

Michael McThrow
San José State University

CS 152 – Programming Paradigms

August 28, 2021

1 Syntax and Semantics

There are hundreds, if not thousands of programming languages in existence, and of the set of program-
ming languages that have been created, a few dozen of them are in common use. We recognize them by
names such as C, Java, Python, and Swift, among many others. Each language has different characteristics
and may belong to one or more paradigms (e.g., procedural, object-oriented, functional, logic, domain-
specific, etc.).

From the point of view regarding the design and implementation of programming languages, the chief
characteristics that distinguishes one programming language from another are its syntax and its semantics.
The New Oxford American Dictionary defines syntax as “the arrangement of words and phrases to create
well-formed sentences in a language.” When applied to programming languages, syntax refers to how
strings representing concepts such as symbols, numbers, and names are arranged to create well-formed
programs. A programming language’s semantics define the meaning of well-formed elements of programs.

Definition 1.1. Syntax defines how strings are arranged to create well-formed programs in a specific pro-
gramming language.

Definition 1.2. Semantics defines the behavior of well-formed programs in a specific programming lan-
guage.

Users of a programming language need to know its syntax and semantics in order to write programs
that will be accepted by the interpreter or compiler and will behave as intended. Implementers of a pro-
gramming language need to know the language’s syntax and semantics in order to accept well-formed
programs, reject programs that are not well-formed, and run well-formed programs that conform to the
language’s semantics.

Example 1.1. In the Java programming language, the following program is well-formed:

public class Hello {
public static void main(String[] args) {

System.out.println("Hello world!");
}

}

Question to Ponder. Can a program be well-formed yet semantically incorrect? (Note that logic errors are
not the same thing as being semantically incorrect.)

This lesson will cover the basic aspects of programming language syntax and how programming lan-
guage implementers deal with them. Grammars allow programming language designers and implementers
to formally describe the language’s syntax. By using a grammar, an interpreter or compiler can convert a
string containing a well-formed program into an abstract syntax tree via the processes of lexical analysis and
parsing. Once an abstract syntax tree is generated, the next step is either interpretation or compilation. An
interpreter will traverse the abstract syntax tree to execute the program per the programming language’s se-
mantic rules. A compiler will traverse the abstract syntax tree to convert it to a representation in a different
language, usually machine code or bytecode.

1

2 Grammar in Programming Languages

We can formally (i.e., mathematically) specify the syntax of a programming language by defining its gram-
mar.

Definition 2.1. According to Slonneger and Kurtz’s excellent textbook Formal Syntax and Semantics of Pro-
gramming Languages (1995), a grammar G is a four-element tuple (Σ, N, P, S), where each element is de-
scribed as follows:

1. Σ is a finite set defining the alphabet of the language, which is a collection of terminal symbols that make
up the symbols accepted by the language. For example, the alphabet of the written English language
consists of the letters of the Latin alphabet (uppercase A-Z and lowercase a-z), Arabic numerals (0-9),
and various punctuation symbols.

2. N is a finite set of non-terminal symbols that describe collections of subphrases that make up the lan-
guage. Some textbooks such as Sundkamp’s Languages and Machines: An Introduction to the Theory of
Computer Science (2006) define this collection of subphrases as variables.

3. P is a finite set of production rules (also known simply as rules) that define each non-terminal symbol
in N in terms of non-terminal symbols and terminal symbols. We can think of P as a function that
maps a sequence of symbols (terminal or non-terminal) to a sequence of terminal and non-terminal
symbols. Such rules can be defined recursively.

4. S is a non-terminal symbol in N that is known as the start symbol, which is an entry point for describ-
ing a program in terms of its grammar.

Let’s make this very mathematical definition of what a grammar is more understandable by describing
an example of a language that accepts arithmetic expressions such as 2 + 3 and 10 - 5 + 7:

2.1 Simple Arithmetic Example

Our language will accept basic arithmetic expressions of the following types:

1. Integers with one or more digits such as 3, 132, 0, and -32.

2. Addition (e.g., 2 + 3)

3. Subtraction (e.g., 8 - 4)

In addition, we are not limited to simple expressions with just one operator. Our language will also accept
more complex expressions such as 3 + 10 - -5 - 2 + -2 - 4 + 6.

Let’s define the grammar Gexpr = (Σ, N, P, S) for this language. Σ, N , and S have the following defini-
tions:

• Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,+,−}

• N = {E, I,D,Ω}

• S = E

P is harder to express using strict set notation, and so let’s describe it more intuitively. Our grammar
Gexpr accepts four non-terminal symbols: E (which represents expressions), I (which represents integers),
D (which represents a digit), and Ω (which represents the operators + and −). Recall that P must map E,
I , D, and Ω to a sequence where each element is in Σ ∪N .

Let’s describe each rule in P :

• E maps to one of the following sequences:

– (I) (an integer)

– (E0,Ω, E1) (an expression followed by an operator followed by another expression)

2

• I maps to one of the following sequences:

– (D0, ..., Dn) (one or more of the digits in D)

– (−, D0, ..., Dn) (the minus sign −, followed by one or more digits in D)

• D maps to 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

• Ω maps to either + or −.

Example 2.1. Given the grammar Gexpr, is the expression 5 + -12 - -8 well-formed?
In order to check whether this expression is well-formed, we need to begin with the start symbol, which

Gexpr defines as E. Using E, we make the following match:

• E0 = 5

• Ω = +

• E1 = −12−−8

Note that the matching is done in left-to-right order. Had we performed a right-to-left match, E0 =
5 +−12, Ω = −, and E1 = −8. We will proceed with the left-to-right match.

We then need to check E0, Ω, and E1. To check E0, we make the match I = 5. We then check I . We then
make the match D0 = 5, and then we check D0. It turns out that 5 is a valid result for D0, and thus we have
shown that D0, I , and E0 are well-formed. We then move on to checking Ω = +. It turns out that + is a
valid result for +, and thus we have shown that Ω is well-formed. We finally move on to E1 = −12 − −8.
We make the following match:

• E2 = −12

• Ω1 = −

• E3 = −8

To check E2 = −12, we make the match I1 = −12. We then check I1 = −12. We notice that the first
element of the sequence −12 is −, and thus we have a match with I1’s second rule, which maps D1 with
1 and D2 with 2, respectively. 1 and 2 are both valid values for D1 and D2 respectively, and thus we have
shown that E2 is well-formed because its descendants I1, D1, and D2 are well-formed.

To check Ω1 = −, we see whether− is a valid value of Ω1. Per the definition in the grammar,− is a valid
value, and thus Ω1 is well-formed.

To check E3 = −8, we make the match I3 = −8. We then check I3 = −8. We notice that the first element
of the sequence−8 is−, and thus we have a match with I3’s second rule, which mapsD3 with 8. 8 is a valid
digit, and thus we have shown that E3 is well-formed because its descendants I3 and D3 are well-formed.
�

Notice that we naturally created a tree of derivations during the process of showing that the expression
5 + -12 - -8 is well-formed. Figure 1 shows the resulting derivation tree.

2.2 A Note about Whitespace and Grammars

In the above grammarGexpr, whitespace is treated as a sequence delimiter (separator); the input to a routine
that checks whether a program is well-formed is a sequence of sequences of symbols. Notice that in the
alphabet Σ ∈ Gexpr there are no whitespace symbols. For example, the expression 2 + -34 - 56 is
treated as ((2), (+), (−, 3, 4), (−), (5, 6)). Notice how in -34 the symbol - is part of the same sequence as
the digits 3 and 4. This is because there is no whitespace between these symbols.

Please keep in mind that not all grammars treat whitespace as sequence delimiters. For example, in
languages that support character string constants such as C and Java (e.g., String a = "This is a
string"), the whitespace characters between the quotes " cannot be treated as delimiters; the Java assign-
ment would yield the following sequence:

3

Figure 1: Derivation tree obtained when checking whether 5 + −12 − −8 is well-formed under grammar
Gexpr. Note that there are no subscripts for each instance of non-terminal symbols.

((S,t,r,i,n,g), (a), (=), (",T,h,i,s, ,i,s, ,a, ,s,t,r,i,n,g,"))

In the grammars describing these languages, whitespace characters are part of the alphabet Σ.

Question to Ponder. Check to see if the following expressions are well-formed underGexpr (pay very close
attention to whitespace, which is why these expressions are in a monospace font):

1. 0

2. 0 + 0 - 0

3. -0

4. 1 * 2 - 3

5. -2 - -3 - -4 + -5

6. -2 - - 3

7. a + b - c

2.3 Classifying Languages Under the Chomsky Hierarchy

Renowned linguist Noam Chomsky developed a hierarchy of formal languages known as the Chomsky Hi-
erarchy in 1956. The Chomsky Hierarchy classifies formal languages based on how restrictive grammatical

4

rules P ∈ G are. There are four types, ranging from the least restrictive to the most restrictive: unrestricted
(type 0), context-sensitive (type 1), context-free (type 2), and regular (type 3).

In this course, we will be focusing on context-free grammars, since many real-world programming
languages’ grammars are classified as such. However, we will cover the other classifications of grammars
since they have important applications.

2.3.1 Type 0 – Unrestricted Grammars

An unrestricted grammar G = (Σ, N, P, S) is one where for every mapping (x → y) ∈ P , x consists of a
sequence of symbols in Σ ∪N where at least one of them is in N .

2.3.2 Type 1 – Context-Sensitive Grammars

Before defining context-sensitive grammars, let’s define two terms that we will constantly see in the rest of
this lesson: left-side and right-side. Given a rule r ∈ P where r = x → y, x refers to the left side of the rule r,
and y refers to the right side of the rule r.

A context-sensitive grammar G = (Σ, N, P, S) is one where for each rule in P , the amount of symbols on
the right side of the rule is greater than or equal to the amount of symbols on the left side. To state this more
formally, G is a context-sensitive grammar if every rule (x→ y) ∈ P meets the following criteria:

1. x consists of a sequence of symbols in Σ ∪N where at least one element is in N .

2. Given x = (σ0, ..., σm) and y = (τ0, ..., τn), m ≤ n.

2.3.3 Type 2 – Context-Free Grammars

A context-free grammar G = (Σ, N, P, S) is one where for each rule (x → y) ∈ P , the left side x consists of a
single non-terminal symbol. To define context-free grammars more formally, G is a context-free grammar
if for every rule (x→ y) ∈ P , x is a sequence (σ0) with one element σ0 ∈ N .

2.3.4 Type 3 – Regular Grammars

A regular grammar G = (Σ, N, P, S) is a context-free grammar with an additional restriction: given each
rule (x→ y) ∈ P , each right side sequence y must have one of these two forms:

1. A one-element sequence (τ0) where τ0 ∈ Σ (i.e., τ0 is a terminal symbol).

2. A two-element sequence (τ0, τ1) where τ0 ∈ Σ and τ1 ∈ N (i.e., a terminal symbol is followed by a
non-terminal symbol).

Note that the ordering of the right side sequence y = (τ0, τ1) matters. If τ0 ∈ N and τ1 ∈ Σ, then G is not
a regular grammar, though it remains a context-free grammar.

2.4 An Aside: Regular Expressions

You may have heard of or perhaps used regular expressions in text editors and various Unix command-line
tools such as grep and sed. Regular expressions are very useful for searching for substrings that match
patterns defined by those regular expressions. What you might not have known before is that regular
expressions are descriptions of regular languages, which in turn are languages which syntax are defined by
regular grammars.

We won’t be covering the intracies of regular expressions in this course; this is in the domain of CS
154 (Formal Languages and Computability), where you will learn more about the theoretical aspects of
grammars, formal languages, and other topics related to theoretical computer science. While CS 152 does
not ignore theory (just wait until I cover the lambda calculus!), it is more focused on the practical aspects of
programming language design and implementation.

5

2.5 Backus-Naur Form

Using the formal definition of grammars described earlier in this section, we already have the tools nec-
essary to define the grammars of real-world programming languages by specifying our alphabet Σ, de-
veloping rules in P that reference Σ and non-terminal symbols N , and defining a starting point S that
tools can use to check the syntactical correctness of a given program written in the language defined by
G = (Σ, N, P, S).

While formally defining grammars in terms of G is useful for the purposes of analyzing grammars
and programs in a mathematically rigorous fashion, unfortunately these descriptions are too low level for
programming language practitioners, such as users of the language, as well as writers of interpreters and
compilers. What would be convenient is another way of expressing grammars that is easier for practitioners
to understand while also being capable of being expressed in terms of G for allowing rigorous analysis.

Thankfully, this more convenient way of expressing grammars exists. Backus-Naur form (BNF) is a
metalanguage used for describing the grammars of programming languages. A grammar description writ-
ten in Backus-Naur form consists of a sequence of production rules. Each rule has a left side and a right
side, delimited by the symbols ::=. On each side of the rule, it consists of a sequence of terminal and non-
terminal symbols. Non-terminal symbols are distinguished from terminal symbols by being enclosed in
brackets. For example, in the sequence <A>B<C>, A and C are non-terminal symbols, while B is a terminal
symbol. Note that we are not limited to single-character names of non-terminal symbols in BNF. This allows
us to use names like <digit> and <prefix> to define non-terminal symbols, which provides semantic
meaning that can help those reading the grammar better understand the purposes of the rules using these
non-terminal symbols.

Sometimes there may be multiple right side values in a rule. When this happens, each right side pos-
sibility is delimited using the pipe (|) character. Sometimes a rule with multiple parts may be written in
multiple lines, with each part delimited by the | character.

Note that production rules may be recursive. These recursive production rules are necessary in tradi-
tional BNF in order to represent sequences of arbitrary length. We will see an example of this when we
create a BNF representation of the simple arithmetic expression language we formally defined in Section
2.1.

2.6 Simple Arithmetic Example in BNF

In Section 2.1 we defined a formal grammar G for a language that accepts basic arithmetic expressions.
Below is the description of that grammar in Backus-Naur form:

<operator> ::= + | -

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits> ::= <digit>
| <digit><digits>

<integer> ::= <digits>
| -<digits>

<expr> ::= <integer>
| <expr> <operator> <expr>

Please observe the following correspondences between the above BNF rules and the rules P ∈ G defined
in Section 2.1:

• <operator> corresponds to Ω.

• <digit> corresponds to D

• <integer> corresponds to I . However, to deal with sequences of digits, in the BNF description we
created a new rule <digits> that expresses sequences of digits.

6

• <expr> corresponds to E. Note that <expr> is the starting point of the above grammar; unfortu-
nately BNF has no special syntax indicating the starting point.

Isn’t the BNF grammar for basic arithmetic expressions much easier to understand than the formal
grammar?

Question to Ponder. How could we extend this grammar to support additional operations such as multi-
plication and division?

2.7 Chomsky Hierarchy and BNF

Suppose you wanted to know if a grammar described in BNF is either unrestricted, context-sensitive,
context-free, or regular. It is possible to determine whether a grammar fits one of these categories with-
out having to convert the BNF description to a formal G = (Σ, N, P, S) representation. Below are the rules
for each type:

0. The grammar is unrestricted if for each production rule, the left side of the rule has at least one non-
terminal symbol.

1. The grammar is context-sensitive if it meets the criterion for unrestricted grammars, and for each
production rule, the amount of symbols on the right side of the rule is greater than or equal to the
amount of symbols on the left side. For example, a <beta> := <gamma> de is context-sensitive
because the left side has two symbols a and <beta>while the right side has three symbols: <gamma>,
d, and e.

2. The grammar is context-free if for each production rule, the left side of the rule has only one symbol,
a non-terminal symbol.

3. The grammar is regular if it is context-free and is of one of the following forms:

(a) <a> ::= a (the right side consists of a single terminal symbol).
(b) <a> ::= b<gamma> (the right side consists of a terminal symbol followed by a non-terminal

symbol).

Note that for regular grammars, multi-part rules where each part conforms to the criteria listed above
are still regular. For example, the following grammar is regular:

<a> ::= a | b | c | d
 ::= e<a> | f<a>

2.8 Extended Backus-Naur Form

There are some recursive patterns that frequently occur in BNF definitions of grammars, such as when
defining digits using the <digits> rule in the grammar described in Section 2.6. Extended Backus-Naur
Form (EBNF) borrows from the syntax of regular expressions to make such definitions more compact.

While we will not cover all extensions to BNF, the most important additions we will cover are parenthe-
ses, * (known as the Kleene star), +, and ?. While the parentheses may appear around one or more symbols,
the operators may appear either after a symbol (to modify the symbol before the operator) or after a closing
parentheses (to modify the sequence of symbols inside the parentheses). The Kleene star operator * is used
to represent a repeating sequence of zero or more symbols (e.g., <digit>* is a sequence of zero or more
digits). The + operator is used to represent a repeating sequence of one or more symbols (e.g., <digit>+
is equivalent to <digit><digit>*). The ? operator is used to represent a zero- or one-time occurrence
of a symbol (e.g., -?<digit>+ can be used to represent negative and positive integers since - may appear
zero or one times). To show how parentheses are used in EBNF, (ab)+ can be used to match ab, abab,
and ababababababab; however, it cannot match a, ba, or abba because the grammar expects repeating
sequences of ab.

To convert the BNF grammar describing simple arithmetic expressions in Section 2.6 to EBNF, we re-
move the <digits> rule and we redefine <integer>’s right side as -?<digit>+.

7

Figure 2: A flowchart of the parsing pipeline, which converts source code to an abstract syntax tree (AST)

Question to Ponder. How would you convert an EBNF representation of a language to BNF? What about
the other way around?

3 The Parsing Pipeline

A compiler or an interpreter needs to parse a program according to the grammar of the language that the
program is written in. Parsing the program allows the compiler/interpreter to work with a data structure
that is more amenable to the analysis and eventual compilation or execution of the program.

Figure 2 is a flowchart of the parsing pipeline. The lexical analyzer, which is also known as simply the
lexer, processes the source code, which is usually represented as a string, and produces a sequence of tokens
that are annotated based on their syntactical meaning. Example 3.1 shows how a lexer may operate.

Example 3.1. Continuing with the EBNF grammar description for our language of arithmetic expressions
as defined in Section 2.8, suppose we have the input string 5 + -12 - -8. The lexer would produce the
following sequence of tokens, where each token is a pair (2-tuple) where the first element is the annotation
and the second element is the name of the token:

("digits", "5"), ("operator", "+"), ("digits", "-12"), ("operator", "-"),
("digits", "-8")

Please note that other representations are possible.

While the previous example was simple, lexical analysis can quickly become complex (for example, han-
dling significant whitespace). Indeed, fully implementing lexers for most useful programming languages
will require knowledge of finite automata, which is beyond the scope of this course. However, you will
learn about finite automata in CS 154, and in CS 153 (Concepts of Compiler Design) you will learn the
nuts and bolts of lexical analysis. In this course, being aware of the role that lexers play in the compila-
tion/interpretation process is sufficient.

After the lexer produces a sequence of tokens, the parser processes this sequence. It may create a deriva-
tion tree (as seen in Figure 1), but whether or not it does so, in the end the parser produces an abstract syntax
tree (AST). Abstract syntax trees differ from derivation trees in the sense that all parent nodes consist of
operators. Figure 3 is an illustration of the abstract syntax tree for the expression 5 + -12 - -8. Such an
abstract tree can be represented programmatically; below is the abstract syntax tree written in Java:

// Note that AST is the base class for all abstract syntax tree
// objects. The classes Number and Expr all derive from AST.
AST ast = new Expr(ExprKind.ADD, new Number(5),

new Expr(ExprKind.SUBTRACT,
new Number(-12),
new Number(-8)));

8

Figure 3: The abstract syntax tree for the expression 5 + -12 - -8

An interpreter would implement and invoke the eval() method on the AST object ast. It will recur-
sively evaluate all of its subtrees, eventually resulting in the answer 1.

Like lexing, parsing is a very complex topic in its own regard. In fact, it is possible to spend an entire
semester studying parsing techniques. A larger treatment of parsing techniques will have to wait for CS
153.

However, we can leverage the help of parser generators such as ANTLR where we specify context-free
grammars using ANTLR’s custom syntax. Given a grammar, ANTLR will generate Java code that handles
our lexing and parsing tasks. It will supply us AST classes that we can extend to perform compilation,
interpretation, or other programming language analysis tasks. We will be using ANTLR during the first
project of this course.

4 Some Trouble Spots

4.1 Ambiguities in Programming Languages

In the English language, we can produce sentences that are grammatically-correct yet can be ambiguous to
parse. For example, let’s consider the sentence “Tim told Dave to grab his coat and leave.” Is his modifying
Tim (Tim’s coat) or Dave (Dave’s coat)? Usually context will disambiguate this sentence, but context is a
matter of semantics (the meaning of well-formed sentences) rather than syntax (the formation of well-formed
sentences).

Similar ambiguities may arise when defining programming languages. One ambiguity that is common
is the dangling else problem, which dates all the way back to ALGOL 60, the first programming language
to introduce now-familiar if/else statements.

Example 4.1. This is code written in C (that can also be written in C++, Java, and JavaScript) that has a
dangling else:

if (condition1)
if (condition2)

printf("Yay!");
else

printf("No!");

Let’s play close attention to the else statement. The problem is: does else modify the first if state-
ment (for condition1) or the second if statement (for condition2)? Unfortunately this is not clear
from looking at the syntax alone, and recall that in C and similar language, indentation is not semantically
meaningful.

Some of you may be wondering why the above code is valid C, since there are four lines below the first
if statement. The short answer is that the rule for introducing brackets in C is as follows: brackets are
required for compound statements (i.e., two or more consecutive statements). The more complete answer
lies in the grammatical rule for handling if, else, and select in C (adapted from The C Programming
Language, 2nd Edition by Brian Kernighan and Dennis Ritchie [1989]):

9

<selection-statement> ::= if (<expression>) <statement>
| if (<expression>) <statement> else <statement>
| switch (<expression>) <statement>

Note that no brackets are used in this definition; you will need to look at the <statement> rule to
see where brackets are used. Here is where the ambiguity is introduced: is the entry point to parsing
<selection-statement> the first part (which lacks else) or the second part (which handles else)?

How is this ambiguity resolved? According to Kernighan and Ritchie, “[t]he else ambiguity is resolved
by connecting an else with the last encountered else-less if at the same block nesting level” (p. 223). In
the above example, the else statement is associated with the second if statement, if (condition2).

Question to Ponder. What are other ways of resolving the dangling else problem in C and silimar lan-
guages?

4.2 Dealing with Operator Precedence

Suppose we were to extend our simple arithmetic expression language to support multiplication (*), divi-
sion (/), and parentheses (()). A naı̈ve attempt would look like the following in EBNF:

<operator> ::= + | - | * | /

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<integer> ::= -?<digits>+

<expr> ::= <integer>
| ’(’ <expr> ’)’
| <expr> <operator> <expr>

(Note that the left and right parentheses are enclosed with single quotes because parentheses have syn-
tactical meaning in EBNF.)

A problem arises when it is time to construct the abstract syntax tree: will the resulting AST respect al-
gebraic rules on operator precedence? Unfortunately BNF and EBNF do not specify the order of evaluation
of parts of rules. In addition, when considering <expr> <operator> <expr>, a compliant sequence of
tokens is generally going to be parsed in either a left-to-right or a right-to-left fashion.

Assuming a left-to-write parsing, suppose we have the expression 2 + (3 * 4 + 5) / 7. If we
draw a derivation tree with the expression being the top node of the tree, the second level will have three
nodes: 2, +, and (3 * 4 + 5) / 7. The last node would have three child nodes: (3 * 4 + 5), /, and
7. The first of these child nodes would have five child nodes: (, 3, *, 4 + 5, and). Finally, the node 4
+ 5 would have three child nodes: 4, +, and 5. After converting the derivation tree to an abstract syntax
tree and evaluating it, the result would be 5 (note that 27/7 is truncated to 3 due to our language only
supporting integers). However, when applying standard arithmetic evaluation rules to the expression 2 +
(3 * 4 + 5) / 7, the result is 4.

How can we specify a grammar that observes standard arithmetic evaluation rules? The answer lies in
the fact that while under BNF and EBNF we cannot specify the ordering of how multi-part rules are evalu-
ated, we can impose ordering by naming these rules differently. Here is a version that imposes ordering so
that way resulting ASTs adhere to standard arithmetic evaluation rules:

<add-operator> ::= + | -

<mult-operator> ::= * | /

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<integer> ::= -?<digits>+

10

<add-expr> ::= <expr> <add-operator> <expr>
| <mult-expr>

<mult-expr> ::= <expr> <mult-operator> <expr>
| <parens-expr>

<parens-expr> ::= ’(’ <expr> ’)’
| <integer>

<expr> ::= <add-expr>

Pay very close attention to how these rules are ordered. Make sure you study this well, since questions
related to how to express operator precedence in BNF and EBNF grammars make great exam questions.

When using parser generator tools, sometimes the tool may have guidelines regarding the ordering of
the evaluation of multi-part rules. For example, in ANTLR each part of the multi-part rule is evaluated in
order from the first defined to the last.

Question to Ponder. What would the resulting derivation tree look like under this new grammar for 2 +
(3 * 4 + 5) / 7?

Question to Ponder. Why aren’t there a <sub-expr> for subtraction and a <div-expr> for division?

Question to Ponder. How would you add support for exponentiation (ˆ) in this grammar?

5 Further Reading

The 1995 textbook Formal Syntax and Semantics of Programming Languages by Kenneth Slonneger and Barry
Kurtz is an excellent guide to learning syntax and semantics. The programming exercises in this textbook
are in Prolog. I highly recommend finding this book and learning from it!

11

