
Overview Continuations Macros in Scheme

Scheme Continuations and Macros

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

October 6, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Continuations and macros form some of Scheme’s more advanced
features. While they are not strictly necessary to be productive in
Scheme, they are very powerful features.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Continuations

The R6RS standard says, “Whenever a Scheme expression is
evaluated there is a continuation wanting the result of the
expression. The continuation represents an entire (default) future
for the computation.”
Whenever the interpreter executes a subexpression, there is a
continuation waiting on the result of that subexpression.
For example, if I execute the expression 5, there is a continuation
waiting on 5 to evaluate.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Continuation Example

Given the expression

(+ 1 3)

The continuation of 3 in the above expression is its parent
expression, which will add 1 to it.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Continuation Definition

Definition (Continuation)

The continuation of an expression E is the expression that wants
the evaluated result of E .

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Continuations

Usually we don’t need to think about continuations when we
code in Scheme; we normally don’t think too deeply about
expressions wanting the results of subexpressions.

However, there are occasions where we want to be able to
deal with continuations manually.

For example, when handling errors we may be keenly interested
in the result of the expression that caused the error. Thus, the
continuation of the error-prone expression E is of interest.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Continuations

Usually we don’t need to think about continuations when we
code in Scheme; we normally don’t think too deeply about
expressions wanting the results of subexpressions.

However, there are occasions where we want to be able to
deal with continuations manually.

For example, when handling errors we may be keenly interested
in the result of the expression that caused the error. Thus, the
continuation of the error-prone expression E is of interest.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

call-with-current-continuation

Often abbreviated call/cc in many Scheme implementations
(but sadly not DrRacket), though we can abbreviate it
ourselves using (define call/cc

call-with-current-continuation).

Syntax: (call/cc fn)

call/cc calls fn, a function that has one parameter, with the
argument being an escape procedure.

According to the R6RS standard, “The escape procedure can
then be called with an argument that becomes the result of
the call to call/cc. That is, the escape procedure abandons
its own continuation and reinstates the continuation of the
call to call/cc.”

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Example of call-with-current-configuration

(let ((fn (lambda (escape)

(+ 2 (escape 3)))))

(+ 1 (call/cc fn)))

The above code evaluates to 4, because (escape 3) is performing
1 + 3, and because the continuation of call/cc fn) is +1.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Example of call-with-current-configuration

(let ((fn (lambda (escape)

(+ 2 (escape 3)))))

(+ 1 (call/cc fn)))

The above code evaluates to 4, because (escape 3) is performing
1 + 3, and because the continuation of call/cc fn) is +1.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Notes about call-with-current-configuration

fn in (call/cc fn) always takes one argument: the escape
procedure.

The escape procedure’s parameters are the same number as
the continuation of the call to call/cc.

The escape procedure is a closure that can be called at any
time. It can be passed along like any other value, and it can
be stored like any other value.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

More about Continuations

Because the escape procedure can be called at any time by any
expression that has access to it, call/cc can be used to
implement a wide variety of custom control-flow operations, even
goto-like arbitrary jumps! Thus, it is very important to treat
call/cc with care.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Table of Contents

1 Overview

2 Continuations

3 Macros in Scheme

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Motivation for Macros

We can extend Lisp by defining functions that are based on
existing functions:

(define (sqrt n)

(expt n 0.5))

(sqrt 2)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Limitations of Function Definitions

However, there are some constructs we would like to provide that
would be difficult to express as functions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Implementing let

Suppose we were implementing our own let function. Below is a
reasonable attempt:

(define (my-let bindings body)

(if (empty? bindings)

body

((lambda (first (first bindings))

(my-let (rest bindings) body))

(second (first bindings)))))

What is wrong with this approach?

The problem is that all function arguments must be evaluated
unless they are quoted.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Implementing let

Suppose we were implementing our own let function. Below is a
reasonable attempt:

(define (my-let bindings body)

(if (empty? bindings)

body

((lambda (first (first bindings))

(my-let (rest bindings) body))

(second (first bindings)))))

What is wrong with this approach?

The problem is that all function arguments must be evaluated
unless they are quoted.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Implementing let

We could sidestep the problem by requiring the quoting of
arguments we don’t want evaluated and then using the eval

function inside of my-let in order to provide more fine-grained
control over evaluation:

(my-let ((’x 5)

(’y 10))

’(+ x y))

However, it would be inconvenient for programmers if they were
required to quote so many arguments like this.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Implementing let

We could sidestep the problem by requiring the quoting of
arguments we don’t want evaluated and then using the eval

function inside of my-let in order to provide more fine-grained
control over evaluation:

(my-let ((’x 5)

(’y 10))

’(+ x y))

However, it would be inconvenient for programmers if they were
required to quote so many arguments like this.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Solution to Implementing let: Macros

The solution is to use macros, which will give us finer control over
how a Scheme expression is evaluated without resorting to quoting.
Macros can be thought of as a way to substitute terms on an AST.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Solution to Implementing let

; Solution is from Veit Heller’s blog at

; blog.veitheller.de/Scheme_Macros_III:_Defining_let.html

(define-syntax my-let

(syntax-rules ()

((my-let ((var val) ...) body ...)

((lambda (var ...) body ...) val ...))))

This works in R5RS Scheme. The ellipses (...) are used to
express variable length arguments and is part of the pattern
language that syntax-rules supports. Please see the R5RS
Scheme specification for more details about this pattern language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Another Example of a Macro: my-when

Note that this also works in R5RS Scheme.

(define-syntax my-when

(syntax-rules ()

((my-when test branch ...) (if test (begin branch ...)))))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Another Example of a Macro: swap

(define-syntax swap

(syntax-rules ()

((swap x y) (begin (let ((tmp x))

(set! x y)

(set! y tmp))))))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

A Basic Pattern for Implementing Macros

(define-syntax MACRO-NAME

(syntax-rules ()

((MACRO-NAME ARG1 ARG2 ...) EXPR)))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Hygienic Macros

A hygienic macro is one where the AST substitutions are
performed in such a way to avoid variable capture, the
phenomenon in which a macro tramples over variables defined
in the environment.

All macros defined by syntax-rules are hygienic per the
R5RS Scheme standard.

However, it is possible to create non-hygienic macros in
Scheme using quasiquotation.

For examination purposes, I’m not going to test you on
quasiquotation syntax, but please be expected to be able to
write hygienic macros and to know the difference between
hygienic and unhygienic macros.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

A word of caution: each Scheme implementation has its own
mechanism for defining macros. While the R5RS standard has
define-syntax that uses syntax-rules to specify hygenic
macros, different implementations of Scheme offer their own
implementation-dependent ways of defining macros. For example,
in the textbook Teach Yourself Scheme in Fixnum Days, the
examples all use define-macro, which is used in some Scheme
implementations, but (unfortunately) not DrRacket.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Macros as Inline Functions

Another advantage of macros is that because they serve as
syntactic substitutions, they can be used as alternatives to defining
functions, since a macro substitution is not the same thing as a
function call.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros



Overview Continuations Macros in Scheme

Summary of Macros

Macros are necessary for implementing certain language
features in Scheme without excessive quoting.

Macros can be used to implement inline functions.

There are many different mechanisms for implementing
macros in Scheme based on the implementation, but in R5RS
Scheme the standard way of implementing macros is through
define-syntax. All macros defined using syntax-rules are
hygienic.

Hygienic macros do not trample over bindings, while
unhygienic macros potentially could.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Scheme Continuations and Macros


	Overview
	Continuations
	Macros in Scheme

