
Basic Features Topics to Be Covered Next Lecture

Introduction to the Haskell Programming
Language

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

October 11, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Table of Contents

1 Basic Features

2 Topics to Be Covered Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Table of Contents

1 Basic Features

2 Topics to Be Covered Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

NOTE: This is NOT a complete introduction to Haskell; this is
more of a high-level overview of the language. I highly recommend
reading the book Learn Yourself a Haskell for Great Good for a
nice tutorial of the language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Overview

Haskell is a statically-typed functional programming language,
which means that types are checked at compile-time instead of
run-time.
Haskell is more “straight-jacketed” than Scheme, partly due to its
being statically-typed, and also partly due to conventions that
more strongly enforce functional programming style.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

When running standalone programs, they need to start with the
line

module Main where

and they need to have main defined.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Hello World Example in Haskell

-- hello.hs -- Hello World in Haskell

module Main where

main = putStrLn "Hello World!"

We can compile the program by running ghc hello.hs at the
command line. We can run it by running ./hello.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

There is also an interactive REPL that can be accessed by running
the ghci command. When using the REPL, you don’t need to
provide module Main where, and you don’t need to define main.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Defining Functions in Haskell

Below are some examples of function definitions in Haskell:

-- Given a number, double it.

double x = 2 * x

-- Given two numbers, return the larger one.

larger x y = if x > y then x else y

-- Usage Examples

double 10

larger 16 7

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Note that by default functions are written in prefix notation,
without parentheses. Parentheses are used for explicitly defining
arguments (e.g., double (double 10) is valid Haskell and
returns 40, but double double 10 is invalid) and for specifying
precedence.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Any binary function (i.e., a function with two arguments) can be
made infix by using tick quotes `.

-- Usage example

16 `larger` 7 -- equivalent of (larger 16 7)

Note that Haskell has many built-in infix binary functions that
don’t require tick quotes, such as those for arithmetic and Boolean
operators.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Basic Types in Haskell

Haskell has built-in support for basic types such as integers,
floating-point numbers, Boolean values, and characters.
Haskell also has built-in support for lists and tuples. Strings in
Haskell are lists of characters. Unlike Scheme, lists and tuples are
homogeneously-typed in Haskell.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Lists in Haskell

The syntax for lists in Haskell is more conventional

myList = [1, 2, 3, 4, 5]

names = ["Ash", "Misty", "Brock"]

We can concatenate lists using the ++ operator.

[1, 2, 3] ++ [4, 5] -- returns [1, 2, 3, 4, 5]

"My name " ++ "is Michael" -- returns "My name is Michael"

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Lists in Haskell

We can get the element at a particular index by using the !!

operator.

[1, 2, 3, 4, 5] !! 2 -- returns 3

"This is a test" !! 4 -- returns ' ' (a space)

a = [2, 4, 6, 8, 10]

a !! 2 -- returns 6

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Lists in Haskell

Other functions that operate on lists include:

head list – Retrieves the first element of a list; analogous
to Scheme’s car.

tail list – Retrieves all but the first element of the list;
analogous to Scheme’s cdr.

last list – Retrieves the last element of the list

init list – Retrieves all but the last element of the list

length list – Retrieves the length of the list

take n list – Retrieves the first n elements of the list

drop n list – Retrieves a new list where the first n
elements of the given list are omitted.

elem x list – Checks to see whether x is in the list

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Ranges

Lists in Haskell have built-in support for ranges.

[a..b] indicates a list with elements ranging from a to b,
inclusive and without skipping steps.

For example, [1..5] is equivalent to [1, 2, 3, 4, 5].
This works for letters: [’a’..’z’] results in a string containing
all lowercase letters in the alphabet in order.

Ranges can be descending; for example, [5..1] is equivalent to
[5, 4, 3, 2, 1]. To represent ranges with skips, specify the
second element. For example, [1, 3..10] is equivalent to [1,

3, 5, 7, 9].

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

List Comprehensions

For more complex list constructions, we can use list
comprehensions.

For example, if we want a list of the square roots of all integers
between 1 and 10, we can run [sqrt x | x <- [1..10]]. This
should be reminiscent of map in Scheme.

We can also perform filtering on the results. For example, if we
want all even numbers between 1 and 100, we can run [x | x <-

[1..100], even]. We use a comma to specify a filter.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Fizzbuzz demo in Haskell

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Functions and Type Specifications

Thus far we have not annotated our custom functions with type
specifications. For simple functions, type specifications are
optional.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Functions and Type Specifications

-- Without type specifications

double x = x * 2

multThree x y z = x * y * z

-- With type specifications

double :: Integer -> Integer

double x = x * 2

multThree :: Integer -> Integer -> Integer -> Integer

multThree x y z = x * y * z

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Anatomy of a Type Specification

double :: Integer -> Integer

The text preceding :: specifies the name of the function
which type is being defined.

The text after :: specifies the types of the input and output.

Integer -> Integer indicates a function that inputs a value
of Integer type and outputs a value of Integer type.

Note that all type names in Haskell start with a capital letter.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Now, what is going on here?

multThree :: Integer -> Integer -> Integer -> Integer

multThree x y z = x * y * z

Let’s recall the lambda calculus, where functions like λx .x only
have one parameter. In the lambda calculus, we can support
multi-parameter functions by treating them as the repeated
application of single-parameter functions that return closures. This
is known as currying, named after logician Haskell Curry.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Now, what is going on here?

multThree :: Integer -> Integer -> Integer -> Integer

multThree x y z = x * y * z

Let’s recall the lambda calculus, where functions like λx .x only
have one parameter. In the lambda calculus, we can support
multi-parameter functions by treating them as the repeated
application of single-parameter functions that return closures. This
is known as currying, named after logician Haskell Curry.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

When currying the function multThree, the function
application multThree a b c is treated as ((multThree a)

b) c.

In fact, multThree a b c is syntactic sugar for
((multThree a) b) c.

When performing multThree a, it returns a closure that
accepts argument b. When calling that closure, it returns
another closure that accepts argument c. When calling that
closure, it returns the answer of multThree.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

We can express this in terms of Scheme syntax:

(define (multThree a)

(lambda (b)

(lambda (c) (* a b c))))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

This is the same concept in Haskell syntax:

multThree a = \b -> (\c -> a * b * c)

Note that \x -> x in Haskell is equivalent to (lambda (x) x) in
Scheme. The above can be called as ((multThree 2) 3) 4, but
it can also be called as multThree 2 3 4 due to the fact that all
multi-parameter functions are curried in Haskell.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Thus, when we are specifying the type of a multi-parameter
function:

multThree :: Integer -> Integer -> Integer -> Integer

multThree a b c = a * b * c

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Type Variables

What happens in situations where we want to create more
generically-defined functions?
For example, a function computing the length of a list should not
care about the types of the elements in the list.

In this situation, we can use a type variable to supply a generic
type. Type variables are lowercase.

-- input is a list of generic type

length :: [a] -> Integer

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Table of Contents

1 Basic Features

2 Topics to Be Covered Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language



Basic Features Topics to Be Covered Next Lecture

Topics to Be Covered Next Lecture

Type Classes

Algebraic Data Types

Pattern Matching

Monads

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to the Haskell Programming Language


	Basic Features
	Topics to Be Covered Next Lecture

