
SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Recursion in Logic Programming

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

November 1, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Table of Contents

1 SWI-Prolog Demo

2 Recursion in Logic Programming

3 Lists

4 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Table of Contents

1 SWI-Prolog Demo

2 Recursion in Logic Programming

3 Lists

4 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

SWI-Prolog

We will be using SWI-Prolog as our Prolog implementation for this
course. SWI-Prolog is open source and is available on Windows,
macOS, and Linux.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

SWI-Prolog Demo

I will be providing a live demonstration on the basics of
SWI-Prolog.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Table of Contents

1 SWI-Prolog Demo

2 Recursion in Logic Programming

3 Lists

4 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Motivation

So far, the rules and queries we defined have been quite simple.
Allowing recursion enables us to define more complex rules and
queries.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Defining Natural Numbers with Logic Programming

Now, Prolog does have built-in features for handling natural
numbers that leverages the CPU’s arithmetic functionality.

However, it is instructive to define numbers in terms of logic
programming rules.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Defining Natural Numbers with Logic Programming

Definition:

natural_number(0).

natural_number(s(X)) :- natural_number(X).

where s is the successor function of arity 1. Please note that the
notation :- is equivalent to ←; when you are typing your Prolog
programs, you would use :-.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Examples of Natural Numbers

0 0

s(0) 1

s(s(0)) 2

s(s(s(0))) 3

... ...

sn(0) n

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Example: Let’s run the query natural number(s(s(0)))?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

What if we wanted to state that natural number X is less than or
equal to natural number Y ?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Let’s define X <= Y, which is equivalent to ’<=’(X, Y). Note
that this is not valid SWI-Prolog code; this is an example from the
textbook.

0 <= X :- natural_number(X).

s(X) <= s(Y) :- X <= Y.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Let’s define X <= Y, which is equivalent to ’<=’(X, Y). Note
that this is not valid SWI-Prolog code; this is an example from the
textbook.

0 <= X :- natural_number(X).

s(X) <= s(Y) :- X <= Y.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Let’s also define plus(X,Y,Z), where Z is the sum of X and Y:

plus(0,X,X) :- natural_number(X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Let’s also define plus(X,Y,Z), where Z is the sum of X and Y:

plus(0,X,X) :- natural_number(X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Let’s do a few examples of plus(X,Y,Z) on the whiteboard.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

We can also take advantage of conjunction in our recursive
definitions. For example, below is the definition of times(X,Y,Z),
where Z is the product of X and Y:

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,XY),plus(XY,Y,Z).

What this does is perform the addition of Y to itself X times (e.g.,
4 ∗ 5 = 5 + 5 + 5 + 5).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

We can also take advantage of conjunction in our recursive
definitions. For example, below is the definition of times(X,Y,Z),
where Z is the product of X and Y:

times(0,X,0).

times(s(X),Y,Z) :- times(X,Y,XY),plus(XY,Y,Z).

What this does is perform the addition of Y to itself X times (e.g.,
4 ∗ 5 = 5 + 5 + 5 + 5).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Table of Contents

1 SWI-Prolog Demo

2 Recursion in Logic Programming

3 Lists

4 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Lists in Prolog

Prolog has built-in support for lists.

As in Scheme and most other Lisp-derived languages, a list is
made up of pairs, where the first element is the head of the
list and the second element contains the rest of the list; the
final pair’s second element contains an empty list.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Lists in Prolog

The fact describing a pair is .(X,Y), where X is the head of
the list and Y is the second element. This is called the dot
functor.

Prolog provides syntactic sugar for pairs in the form of [X|Y];
this usage is far more common.

The dot functor is the equivalent of a Lisp cons cell.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Defining a List in Prolog

list([]).

list([X|Xs]) :- list(Xs).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Let’s show an example of list on the whiteboard.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

How do we determine whether an element X is a member of a list?

member(X,[X|Xs]).

member(X,[Y|Ys]) :- member(X,Ys).

Note that the first clause could also be

member(X,[X|Xs]) :- list(Xs).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

How do we determine whether an element X is a member of a list?

member(X,[X|Xs]).

member(X,[Y|Ys]) :- member(X,Ys).

Note that the first clause could also be

member(X,[X|Xs]) :- list(Xs).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Here are some possible queries that we could perform:

member(a, [a, b, c])?

Is a a member of the list [a, b, c]?

member(X, [a, b, c])?

What are the members of the list [a, b, c]?

member(a, X)?

Which lists contain a?

Yes, we could do this in logic programming.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Finding the Prefix and Suffix of a List

prefix – Does the second list begin with the first list?

prefix([],Ys).

prefix([X|Xs],[X|Ys]) :- prefix(Xs,Ys).

suffix – Is the end of the second list the first list?

suffix(Xs,Xs).

suffix(Xs,[Y|Ys]) :- suffix(Xs,Ys).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Let’s do some examples of prefix and suffix on the whiteboard.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

append – Appends the second list to the first list

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Let’s do an example of append on the whiteboard.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Interestingly, we could define prefix and suffix in terms of
append:

prefix(Xs,Ys) :- append(Xs,As,Ys).

suffix(Xs,Ys) :- append(As,Xs,Ys).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Reversing a List

We could leverage append to reverse a list:

reverse([],[]).

reverse([X|Xs],Zs) :- reverse(Xs,Ys),append(Ys[X],Zs).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Reversing a List

However, we could make its execution more efficient by using an
accumulator.

reverse(Xs,Ys) :- reverse(Xs,[],Ys).

reverse([X|Xs], Acc, Ys) :- reverse(Xs,[X|Acc],Ys).

reverse([],Ys,Ys).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

A Note About the Ordering of Rules in Prolog

The order of rules in Prolog matters; when executing queries
Prolog looks up rules from the first defined to the last. For the
examples in this slide rule ordering should not matter, but in more
complex programs, rule order matters.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Table of Contents

1 SWI-Prolog Demo

2 Recursion in Logic Programming

3 Lists

4 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Resolution and Unification

In logic programming, an interpreter uses resolution and
unification to answer queries.

Borrowing from Professor Tom Austin’s definitions from his
Spring 2019 CS 152 slides:

“Resolution is the process of matching facts and rules to
perform inferencing, the derivation of logical conclusions from
the rules.”
“Unification is the instantiation of variables via pattern
matching.”

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

SWI-Prolog Demo Recursion in Logic Programming Lists Preview of Next Lecture

Reading for Next Lecture

Please read Chapters 4 and 5 of The Art of Prolog. For
supplemental reading, the textbook we used for Scheme, Structure
and Interpretation of Computer Programs, has information about
an entire logic programming engine built in Scheme in Chapter 4.4.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Recursion in Logic Programming

	SWI-Prolog Demo
	Recursion in Logic Programming
	Lists
	Preview of Next Lecture

