
Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Introduction to Pure Prolog and Meta-logical
Predicates

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

November 10, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Table of Contents

1 Overview

2 Prolog’s Execution Model

3 Arithmetic in Prolog

4 Type Predicates

5 Accessing Compound Terms

6 Meta-logical Predicates

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Table of Contents

1 Overview

2 Prolog’s Execution Model

3 Arithmetic in Prolog

4 Type Predicates

5 Accessing Compound Terms

6 Meta-logical Predicates

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

You might be wondering, “haven’t we been learning Prolog this
whole time? Why is this lecture titled, ‘Introduction to Pure
Prolog?”’

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Yes, we have been learning Prolog this whole time. You can run
the examples shown thus far in this course using SWI-Prolog or
other Prolog implementations.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

But, you have been learning a small, core subset of Prolog.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

In this lecture, we will cover additional pure Prolog features, such
as arithmetic, and we will also cover Prolog’s execution model.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Table of Contents

1 Overview

2 Prolog’s Execution Model

3 Arithmetic in Prolog

4 Type Predicates

5 Accessing Compound Terms

6 Meta-logical Predicates

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Let’s recall the resolution algorithm we studied in our last lesson:

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Resolution with Unification

Figure: Resolution algorithm with unification [Sterling and Shapiro 1994,
p. 93]

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

There are two decisions that Prolog implementations need to
make:

1 How to choose a goal A from the resolvent.

2 How to replace A with A′ ← B1, ...,Bn from the program.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

There are two decisions that Prolog implementations need to
make:

1 How to choose a goal A from the resolvent.

2 How to replace A with A′ ← B1, ...,Bn from the program.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

There are two decisions that Prolog implementations need to
make:

1 How to choose a goal A from the resolvent.

2 How to replace A with A′ ← B1, ...,Bn from the program.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

In Prolog, the resolvent is a stack.

When the interpreter chooses a goal A from the resolvent, it
pops it from the stack.

When the interpreter chooses a A′ ← B1, ...,Bn from the
program:

1 It chooses the first goal in the program that unifies with A.
According to Sterling and Shapiro, “if no unifiable clause is
found for the popped goal, the computation is unwound to the
last choice made, and the next unifiable clause is chosen” [p.
120].

2 It pushes the elements B1, ...,Bn onto the stack.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Rule Order in Prolog

Because of how Prolog implementations handle resolvents,
rule order in Prolog matters.

To directly quote Sterling and Shapiro, “the rule order
determines the order in which solutions are found” [p. 130,
emphasis original].

This is unimportant for pure Prolog programs since reordering
rules will not affect the results of computations, but this will
be very important once the cut feature is introduced next
week.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Is it possible for a Prolog query to not terminate?

Yes, it is
possible for a Prolog query to not terminate.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Is it possible for a Prolog query to not terminate? Yes, it is
possible for a Prolog query to not terminate.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Non-termination in Prolog

This is particularly a problem with left-recursive rules.

A left-recursive rule is one where the first goal in the body is
recursive (e.g., married(X,Y) :- married(Y,X).).

The best way to deal with possible non-termination in
left-recursive rules is to avoid them by rewriting the rule in
such a way to avoid left-recursion.

For example, we could define a new predicate,
are married(Person1,Person2) with the following rules:

are married(X,Y) :- married(X,Y).

are married(X,Y) :- married(Y,X).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Circular definitions are also problematic; make sure you avoid them.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

The ordering that does matter considerably is the ordering of
goals; i.e., each Bi in A← B1, ...,Bn where 1 ≤ i ≤ n.

Goal ordering is important not only for runtime efficiency reasons,
but also for termination reasons.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

The ordering that does matter considerably is the ordering of
goals; i.e., each Bi in A← B1, ...,Bn where 1 ≤ i ≤ n.

Goal ordering is important not only for runtime efficiency reasons,
but also for termination reasons.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Given the rule

ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

What would happen if the goals were swapped, resulting in the rule

ancestor(X,Y) :- ancestor(Z,Y),parent(X,Z).

This would introduce left-recursion to the rule, which means the
rule would become non-terminating.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Given the rule

ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

What would happen if the goals were swapped, resulting in the rule

ancestor(X,Y) :- ancestor(Z,Y),parent(X,Z).

This would introduce left-recursion to the rule, which means the
rule would become non-terminating.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Table of Contents

1 Overview

2 Prolog’s Execution Model

3 Arithmetic in Prolog

4 Type Predicates

5 Accessing Compound Terms

6 Meta-logical Predicates

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

System Predicates

Not all operations in Prolog can be conveniently or efficiently
expressed as pure logic programs.

For example, we want to be able to perform arithmetic using
our computer’s ALU and not by using custom functors.

To provide such functionality, Prolog has system predicates.

This is analogous to Scheme’s built-in functions such as
define and lambda.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Arithmetic in Prolog

Prolog provides built-in predicates for performing arithmetic.

Examples include +, -, *, and /.

We can perform queries using the following form: Value is

Expression?.

Examples of queries:

(X is 3+5)? ⇒ X=8.
(8 is 3+5)? ⇒ yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

What does the query (3+5 is 3+5)? evaluate to?

Actually, this query will fail.

The reason this query fail is because the left side of is expects a
value, not an expression.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

What does the query (3+5 is 3+5)? evaluate to?

Actually, this query will fail.

The reason this query fail is because the left side of is expects a
value, not an expression.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Comparisons in Prolog

Prolog provides the following built-in comparison predicates:
<, >, <=, and >=.

We can perform queries using the following form: A op B,
where A and B are arithmetic expressions and op is one of the
above comparison predicates.

Examples:

(1 < 2)? ⇒ yes.
(4*6 < 5*5)? ⇒ yes.
(6/2 < 5-1)? ⇒ no.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

What does the query (N < 1)? evaluate to?

This query results in an error since N is not an expression, but
rather, a variable.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

What does the query (N < 1)? evaluate to?

This query results in an error since N is not an expression, but
rather, a variable.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Arithmetic Queries

We can now write rules such as the following:

plus(X,Y,Z) :- Z is X+Y.

Unfortunately, we can’t perform queries such as the following:

plus(3,X,8)?

In order to do so, we need to use meta-logical predicates, which
will be covered in the next lecture and is discussed in Chapter 10
of the textbook.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Arithmetic Queries

We can now write rules such as the following:

plus(X,Y,Z) :- Z is X+Y.

Unfortunately, we can’t perform queries such as the following:

plus(3,X,8)?

In order to do so, we need to use meta-logical predicates, which
will be covered in the next lecture and is discussed in Chapter 10
of the textbook.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Table of Contents

1 Overview

2 Prolog’s Execution Model

3 Arithmetic in Prolog

4 Type Predicates

5 Accessing Compound Terms

6 Meta-logical Predicates

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Type Predicates

A type predicate is a unary predicate that is able to determine the
type of a term.

Type predicates in Prolog have an equivalent in Scheme (e.g.,
number?, pair?, symbol?, etc).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Type Predicates

A type predicate is a unary predicate that is able to determine the
type of a term.

Type predicates in Prolog have an equivalent in Scheme (e.g.,
number?, pair?, symbol?, etc).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

integer

integer determines whether a parameter is an integer.

Examples:

integer(5)? ⇒ true.

integer(-3)? ⇒ true.

integer(x)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

integer

integer determines whether a parameter is an integer.

Examples:

integer(5)? ⇒ true.

integer(-3)? ⇒ true.

integer(x)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

atom

atom determines whether the parameter is an atom (i.e., a
lowercase symbol in Scheme terminology).

Examples:

atom(bulbasaur)? ⇒ true.

atom(5)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

atom

atom determines whether the parameter is an atom (i.e., a
lowercase symbol in Scheme terminology).

Examples:

atom(bulbasaur)? ⇒ true.

atom(5)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

compound

compound determines whether the parameter has the form of a
relation with one or more arguments.

compound(evolution(bulbasaur,ivysaur))? ⇒ true.

compound(s(0))? ⇒ true.

compound(bulbasaur)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

compound

compound determines whether the parameter has the form of a
relation with one or more arguments.

compound(evolution(bulbasaur,ivysaur))? ⇒ true.

compound(s(0))? ⇒ true.

compound(bulbasaur)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

number

number determines whether the parameter is a number. The
number can be floating-point as well as an integer.

number(5)? ⇒ true.

number(5.1)? ⇒ true.

number(-5.1)? ⇒ true.

number(x)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

number

number determines whether the parameter is a number. The
number can be floating-point as well as an integer.

number(5)? ⇒ true.

number(5.1)? ⇒ true.

number(-5.1)? ⇒ true.

number(x)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

atomic

atomic determines whether the parameter is either an atom or a
number.

atomic(5)? ⇒ true.

atomic(-3.14159)? ⇒ true.

atomic(x)? ⇒ true.

atomic(s(0))? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

atomic

atomic determines whether the parameter is either an atom or a
number.

atomic(5)? ⇒ true.

atomic(-3.14159)? ⇒ true.

atomic(x)? ⇒ true.

atomic(s(0))? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Time for a demo in SWI-Prolog.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

What about for variables? Are there any built-in type predicates
that detect whether a term is a variable?

Yes, and we will explore them later during this lecture.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Table of Contents

1 Overview

2 Prolog’s Execution Model

3 Arithmetic in Prolog

4 Type Predicates

5 Accessing Compound Terms

6 Meta-logical Predicates

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Recall that a compound term is one that has the form of a relation
with one or more arguments.

Examples:

evolution(bulbasaur,ivysaur).

plus(s(0),s(s(0)),s(s(s(0)))).

s(0).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Recall that a compound term is one that has the form of a relation
with one or more arguments.

Examples:

evolution(bulbasaur,ivysaur).

plus(s(0),s(s(0)),s(s(s(0)))).

s(0).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Suppose we want to obtain information about a compound term,
such as its arguments or its arity (i.e., number of arguments).

We
can obtain this information by using two built-in relations:
functor/3 and arg/3.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Suppose we want to obtain information about a compound term,
such as its arguments or its arity (i.e., number of arguments). We
can obtain this information by using two built-in relations:
functor/3 and arg/3.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

functor

functor(Term,Name,Arity) is a relation that accepts a
compound term Term and checks to see if the term’s name
matches with Name and if the arity of the term is equal to Arity.

Example:

functor(evolution(eevee,jolteon),evolution,2)? ⇒
true.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

functor

functor(Term,Name,Arity) is a relation that accepts a
compound term Term and checks to see if the term’s name
matches with Name and if the arity of the term is equal to Arity.

Example:

functor(evolution(eevee,jolteon),evolution,2)? ⇒
true.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

arg

arg(N,Term,Arg) checks the compound term Term to see if its
Nth argument is equal to Arg. Note that N starts at 1.

Example:

arg(1,evolution(eevee,jolteon),eevee)? ⇒ true.

arg(2,evolution(eevee,jolteon),eevee)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

arg

arg(N,Term,Arg) checks the compound term Term to see if its
Nth argument is equal to Arg. Note that N starts at 1.

Example:

arg(1,evolution(eevee,jolteon),eevee)? ⇒ true.

arg(2,evolution(eevee,jolteon),eevee)? ⇒ false.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Time for another SWI-Prolog demo.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Table of Contents

1 Overview

2 Prolog’s Execution Model

3 Arithmetic in Prolog

4 Type Predicates

5 Accessing Compound Terms

6 Meta-logical Predicates

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Meta-logical predicates are predicates that “sit above” the logic
programming system. They are used for exercising control over the
execution of logic programs.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

So, back to our earlier question? Are there any built-in type
predicates that detect whether a term is a variable?

Yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

So, back to our earlier question? Are there any built-in type
predicates that detect whether a term is a variable?

Yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

var and nonvar

var(Term) checks if Term is a variable.

nonvar(Term) checks if Term is not a variable.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Example

Here is a new version of plus(X,Y,Z) that uses nonvar:

plus(X,Y,Z) :- nonvar(X),nonvar(Y),Z is X+Y.

plus(X,Y,Z) :- nonvar(X),nonvar(Z),Y is Z-X.

plus(X,Y,Z) :- nonvar(Y),nonvar(Z),X is Z-Y.

Compared to the last plus example from previous lectures, this
has restored some query functionality; we can now run queries such
as plus(X,6,10)?. Note that performing queries with two
variables is still not supported in this above definition, but we have
the tools to extend the definition to support such queries (and this
will be one of your lab exercises).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Example

Here is a new version of plus(X,Y,Z) that uses nonvar:

plus(X,Y,Z) :- nonvar(X),nonvar(Y),Z is X+Y.

plus(X,Y,Z) :- nonvar(X),nonvar(Z),Y is Z-X.

plus(X,Y,Z) :- nonvar(Y),nonvar(Z),X is Z-Y.

Compared to the last plus example from previous lectures, this
has restored some query functionality; we can now run queries such
as plus(X,6,10)?. Note that performing queries with two
variables is still not supported in this above definition, but we have
the tools to extend the definition to support such queries (and this
will be one of your lab exercises).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Example

Here is a new version of plus(X,Y,Z) that uses nonvar:

plus(X,Y,Z) :- nonvar(X),nonvar(Y),Z is X+Y.

plus(X,Y,Z) :- nonvar(X),nonvar(Z),Y is Z-X.

plus(X,Y,Z) :- nonvar(Y),nonvar(Z),X is Z-Y.

The uses of nonvar that are placed at the initial parts of the
bodies of the above clauses are examples of meta-logical tests.
Meta-logical tests decide which clause in a procedure should be
used [Sterling and Shapiro].

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

The == predicate checks to see if X and Y are identical. \== checks
to see if X and Y are not identical.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

freeze and melt

The relation freeze(Term,Frozen) makes a copy of Frozen and
makes it ground (i.e., treats it as if it had no variables). The
relation melt(Frozen,Thawed). “unfreezes” Frozen and makes
it un-ground. Note that the textbook describes a melt new

relation, but it is not defined in SWI-Prolog.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates



Overview Prolog’s Execution Model Arithmetic in Prolog Type Predicates Accessing Compound Terms Meta-logical Predicates

Logical Disjunction in Prolog

We can perform logical conjunction (i.e, AND) by using
commas in Prolog rules.

For logical disjunction, we use the semicolon:

Example: (X ; Y). means X OR Y.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Introduction to Pure Prolog and Meta-logical Predicates


	Overview
	Prolog's Execution Model
	Arithmetic in Prolog
	Type Predicates
	Accessing Compound Terms
	Meta-logical Predicates

