Cuts and Negation

CS 152 -- Programming Paradigms
San Jose State University

Michael McThrow
November 17, 2021

Agenda

- Backtracking and Search Trees
» Cuts

* Negation

* Project #5 Detalls

Backtracking and Search Trees

Search Trees

* According to Sterling and Shapiro, "A search tree of a goal G with respect to a
program P is defined as follows":

G is the tree's root.
 Nodes are goals (can be conjunctive).

 "There is an edge leading from a node N for each clause in the program
whose head unifies with the selected goal.”

 "Each branch in the tree from the root is a computation of G by P."

e | eaves are either success nodes or failure nodes. Each success node is a
solution of the query.

father (abraham, isaac). male(isaac).
father(haran,lot). male(lot).
father (haran,milcah). female(milcah).
father (haran,yiscah). female(yiscah).

son(X,Y) « father(Y,X), male(X).
daughter(X,Y) < father(Y,X), female(X).

Program 1.2 Biblical family relationships
From Sterling and Shapiro, p. 23

Search Tree Example

<TG e

father(haran,S),male(S male(S),father(haran,S

{S=yiscah}
male(milcah)
male(yiscah)

{S=isaac

father
haran.isaac

Figure 5.2 Two search trees

From Sterling and Shapiro, p. 111

{S=lot}

Search Tree Example

append(As,BsIa,b,E)\

{As=[a|As1]} As=[],Bs=[a,b,c]}

append (Xs,Ys,XsYs) — append(As1,Bs,[b,c

XsYs is the result of concatenating
the lists Xs and Ys.

append([],Ys,Ys).

{As1=[b]As2]}

{As1=]]1,Bs=[b,c]}

append(As2,Bs,[c]

append ([X{Xs],Ys, [X|Zs]) < append(Xs,Ys,Zs). (As2=[c|As3]}] {As2={],Bs=[c]}
s2={],Bs=[c
Program 3.15 Appending two lists append(As3,Bs,[]) _
From Sterling and Shapiro, p. 60 (As3=1Bs=(1]

Figure 5.3 Search tree with multiple success nodes

From Sterling and Shapiro, p. 112

Search Trees

 Sometimes there can be multiple possible search trees for a search query.

 Each possible search tree depends on decisions made regarding how new

elements are added to the resolvent when resolving the query and how the
new clause A' from P is found.

Review: Resolution Algorithm

Input: A goal G and a program P

Output: An instance of G that is a logical consequence of P,
or no otherwise

Algorithm: Initialize the resolvent to G.
while the resolvent is not empty do
choose a goal A from the resolvent
choose a (renamed) clause A" —B,,...,B, from P
such that A and A" unify with mgu 0
(if no such goal and clause exist, exit the while loop)
replace A by B,,...,B, in the resolvent
apply 0 to the resolvent and to G
If the resolvent is empty, then output G, else output no.

Figure 4.2 An abstract interpreter for logic programs

From Sterling and Shapiro, p. 93

Review: Resolution Algorithm (with Prolog implementation details)

Input: A goal G and a program P

Output: An instance of G that is a logical consequence of P,
or no otherwise

Algorithm: Initialize the resolvent to G. reSOIVent iS d StaCk

while the resolvent is not empty do

choose a goal A from the resolvent A = resolvent.popi)
choose a (renamed) clause A" —B,,...,B, from P

choose fIrSt A I'n prOgM such that A and A" unify with mgu 6
P that unifies with A (if no such goal and clause exist, exit the while loop)

replace A by B,,...,B, in the resolvent B71,..., BN are pushed onto the
apply 0 to the resolvent and to G stack

If the resolvent is empty, then output G, else output no.

Figure 4.2 An abstract interpreter for logic programs

From Sterling and Shapiro, p. 93

Backtracking

Input: A goal G and a program P

Output: An instance of G that is a logical consequence of P,
or no otherwise

Algorithm: Initialize the resolvent to G.
What happens when there while the resolvent is not empty do

is no A'? We backtrack to choose a goal A from the resrolvent

choose a (renamed) clause A" —B,,...,B, from P
the _IaSt A that SUCCGSSfu”y such that A and A" unify with mgu 0
unified. This allows us to try (if no such goal and clause exist, exit the while loop)
q different com putation replace A by B,,...,B, in the resolvent
pa-th Note that apply 0 to the resolvent and to G

bathraCking is not shown If the resolvent is empty, then output G, else output no.
In this algorithm_ Figure 4.2 An abstract interpreter for logic programs

From Sterling and Shapiro, p. 93

Problems That Arise When Using Prolog

* Unnecessary backtracking in some queries.

* This unnecessary backtracking leads to wasted computations.

* |t would be nice for the programmer to be able to ignore, or "prune" branches
of a search tree that the programmer knows are "unfruitful.”

* Prolog provides such functionality by providing cuts.

Cuts

 Acutis expressed as a! in Prolog.

 Whenever Prolog encounters a ! inside of a rule, this means that Prolog will

commit to all of the choices made before ! appeared; the interpreter will not
backtrack on any decision made before !.

Merge Example from Textbook (p. 190)

merge(Xs,YSs,Zs)
Zs is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.

merge ([X|Xs], [YIYs], [X|Zs]) « X <Y, merge(Xs, [Y!|Ys],Zs).
merge([X|Xs], [Y]Ys], [X,YlZs]) < X=:=Y, merge(Xs,Ys,Zs).

merge([X|Xs], [Y|Ys],[YiZs]) «~ X > Y, merge([X|Xs],Ys,Zs).
merge (Xs, [1,Xs).
merge([],Ys,Ys).

Program 11.1 Merging ordered lists

merge ([X|Xs], [Y|Y¥s],[X|Zs]) « X <Y, !, merge(Xs,[Y |¥Ys],Zs).

Replacement of first rule with an included cut

Merge Example with Cuts (p. 192)

merge(Xs,Ys,Zs) —
Zs is an ordered list of integers obtained from merging
the ordered lists of integers Xs and Ys.

merge([X|Xs], {Y|Ys], [X|Zs]) <
X <Y, !, merge(Xs, [Y|Ys],Zs).
merge ([X|Xs], {YI|Ys], [X,YIZs]) <
X=:=Y, !, merge(Xs,Ys,Zs).
merge ([X{Xs], [YIYs], [YiZs]) <
X>Y, !, merge([XiXs],Ys,Zs).
merge(Xs,[],Xs) « !.
merge([],Ys,Ys) « !.

Program 11.2 Merging with cuts

Minimum Example with Cuts (p. 193)

minimum((X, Y,Min) «
Min is the minimum of the numbers X and Y.

minimum(X,Y¥,X) « X<Y, !.
minimum(X,Y,Y) <« X > Y, 1,

Program 11.3 minimum with cuts

Green and Red Cuts

* (Green cuts are used for removing unnecessary backtracking in Prolog
programs.

* All examples shown have been examples of green cuts.
* (Green cuts are less controversial.
 Red cuts are used for changing the set of goals the program can prove.

 "A standard Prolog programming technique using red cuts Is the omission
of explicit conditions. Knowledge of the behavior of Prolog, specifically the
order in which rules are used In a program, Is relied on to omit conditions
that could be inferred to be true" [Sterling and Shapiro, p. 203].

+ Highly controversial; USE WITH EXTREME CAUTION!

Negation

Why should Prolog programmers
be cautious about negation?

Recall that in logic programming, if a query results in a "no"
or "false" answer, this does not state anything about the
truth of the query; it means that the interpreter failed to prove
the query from the program [Sterling and Shapiro, p. 13].

However, It Is convenient for
programmers to express certain logical
statements using negation.

Examples of Negation

* single(X) :- not married(X).
» fake(X) :- not authentic(X).

e import(X) :- not domestic(X).

The concept "negation as failure" allows
us to express negation Iin logic
programming.

According to Sterling and Shapiro, "A goal not G

will be assumed to be a consequence of a
program P If G is not a consequence of P" (p. 114).

Cuts can be used to implement
negation as failure.

Negation as Failure

* Prolog provides a fai1l_1f(Goal) predicate, which is equivalent to the not
statement.

e Prolog also has a system predicate called fail that always fails.

e Semantics of not G [Sterling and Shapiro, p. 198]:

Let us consider the behavior of Program 11.6 in answering the query
not G? The first rule applies, and G is called using the meta-variable
facility. If G succeeds, the cut is encountered. The computation is then
committed to the first rule, and not G fails. If the call to G fails, then the
second rule of Program 11.6 is used, which succeeds. Thus not G fails if
G succeeds and succeeds if G fails.

Project #5 Detalls

Project #5 Detalls

* You will be implementing a simple Prolog interpreter.

 No numbers, no type predicates, no meta-logical predicates, no cuts or negation; just the Prolog you learned
in the first 5-6 chapters of The Art of Prolog.

* The key is implementing resolution, unification, and backtracking correctly. You will use the resolution and
unification algorithms from the textbook.

* Choices of programming languages for implementation:
* C, C++, Java, Python, R5RS Scheme (#1lang r5rs in DrRacket), Racket (#lang racket in DrRacket).

* If you want to use a different language, ask me in advance (however, logic programming languages are
banned).

 May work with one partner. Only one partner has to submit, but both names need to be in the submission files.

* Feel free to test your interpreter on your Project #4 submissions (though any code taking advantage of features
not in the first six chapters of the textbook won't work).

* Due date: Sunday, December 12 at 11:59pm Pacific Standard Time. Late submissions will be accepted until
Wednesday, December 15 at 11:59pm PST.

The specifications for Projects #5 and #6
will be posted no later than Saturday
morning.

