
Michael McThrow
November 29, 2021

The Self Programming
Language
CS 152 -- Programming Paradigms
San José State University

Prototype-Based Programming

• In traditional object-oriented programming, classes define objects.

public class Point {
 private int x, y;

 public Point(int x, int y) {
 self.x = x;
 self.y = y;
 }

 public void add(Point second) {
 x = second.getX();
 y = second.getY();
 }
}

Point x = new Point(3,4);
Point y = new Point(5,6);
x.add(y);

• Object-oriented programming languages provide inheritance, creating a hierarchy of classes with instance variables
and behavior (defined by methods) inherited from parent classes.

public class Point {
 private int x, y;

 public Point(int x, int y) {
 self.x = x;
 self.y = y;
 }

 public void add(Point second) {
 x = second.getX();
 y = second.getY();
 }
} Point x = new Point(3,4);

Point y = new Point(5,6);
x.add(y);

public class GUIPoint extends Point {
 private Color color;

 public GUIPoint(int x, int y, Color color) {
 super(x, y);
 self.color = color;
 }
}

GUIPoint inherits Point

• A nice advantage of class-based programming languages is that each object has
clear definitions regarding its state (e.g., variables) and its behavior (e.g., methods/
messages).

• Class-based programming languages can also be useful for performing compile-time
type checks; we don't have to wait until the program is running to perform some type
checking (for example, making sure that the object has the method defined).

• However, consider the following situation:

• What happens if we want to assign a method to a particular object as a
one-off special case?

• In class-based object-oriented programming languages, this necessitates
creating a new class that is a subclass of its parent, and then
instantiating an object based on that subclass.

• Consider another situation: what if the behavior of a long-running class
changes over time?

• In an environment where we are describing objects with fixed behavioral
characteristics, class-based object-oriented programming seems to be a
natural fit.

• Consider modeling situations such as driving a car, or making a transaction at
a bank.

• Generally, during the lifetime of the object (such a car), its behavior (in
terms of the steps needed to carry out a procedure) is most likely not going
to change.

However, not all objects behave the
same throughout their lifetimes.

Consider the metamorphosis of an insect.

caterpillar

cocoon

moth
egg

Consider the metamorphosis of an insect.

caterpillar

cocoon

moth
egg

In a live system where objects have long lifetimes, objects could potentially change
their behavior and exhibit new behaviors (or lose old behaviors).

Limitations of Class-Based OO Programming
• In a class-based object-oriented system, how would we deal with new

methods added over time?

• For example, moths can reproduce, but eggs, caterpillars, and cocoons
cannot.

• Also, the concept of metaclasses can be hard to grasp for beginners [Borning
1986].

Remember, Smalltalk was
originally intended for children.

Alan Kay and Metaclasses in Smalltalk-80
Alan Kay quotes from "The Early History of Smalltalk" [Kay 1993]:

• "The most puzzling strange idea...was the introduction of metaclasses
[in Smalltalk-80]".

• "[N]o child had programmed in any Smalltalk since Smalltalk-76 made
its debut. Xerox (and PARC) were now into 'workstations' as things in
themselves--but I still wanted 'playstations.'"

One way of dealing with these types of
issues is adopting class-less object-

oriented programming.

In a sense, class-less object-oriented programming
seems to be the logical conclusion of everything being
an object, including classes. If you think about it really

hard, are classes truly necessary?

Why are objects defined by their classes?
Why have classes to begin with?

NOTE: This conversation is historically
inaccurate.

Deep	Thoughts
by Karl Marx

It turns out that we don't need classes
to do object-oriented programming.

Self

The Self Programming Language
• Created by David Ungar.

• His PhD thesis, under advisor David Patterson of RISC
fame, was on writing a high-performance Smalltalk
environment.

• Self was originally done at Stanford University back when
Ungar was a professor, before he left Stanford to go to
Sun Microsystems, where he continued working on Self.

• Self is heavily influenced by Smalltalk

• Syntax is very similar, and everything is an object.

• Like most traditional Smalltalk implementations, Self is
also a self-contained GUI environment.

• Self has no support for classes; this style of object-oriented
programming is called prototype-based programming.

The Self Programming Language
• Objects consists of slots.

• This "slot" terminology is also in the Common Lisp Object System (which I will
introduce in the next lecture) and Dylan (a language developed by Apple in the 1990s
that is influenced by Lisp but has an Algol-style syntax).

• Slots store either state (the equivalent of variables) or behavior (methods).

• There are no variables; instead, if an object wants to maintain state, it sends a message
to itself (e.g., self x: 5 creates a slot named x and stores the value 5).

• This is how Self got its name.

• Instead of constructing objects from class constructors, in Self we clone objects by
copying other objects.

• A prototype is an object that serves as an "example" for defining behavior.

Inheritance in Self
• In Smalltalk and other class-based object-oriented programming languages,

each object contains a pointer to its class.

• In Self, each object contains a pointer to its parent object.

• To perform inheritance in Self, "[i]f an object receives a message and it has no
matching slot, the search continues via a parent pointer" [Ungar and Smith
1991, p. 3]

4 UNGAR AND SMITH

(class)

(superclass)

(inst vars)

(methods)

(name) Point

class, x, y

how to

(class)

(superclass)

(inst vars)

(methods)

(name) Object

nil

(none)

(class)

(y)

(x) 3

5

7

9

+ add points

how toprint print objects

x

x:

y

y:

parent*

3

!

5

!

x

x:

y

y:

parent*

7

!

9

!

+

parent*

print

how to
add points

how to
print objects

SELF objectsSmalltalk

. . .

. . .

instances and classes

Figure 1. A comparison of Smalltalk instances and classes with SELF objects.

At the bottom of each figure are two point objects that have been created by a user program.

Each SELF point intrinsically describes
its own format, but appeals to another
object for any behavior that is shared
among points. In this example, the points
appeal to an object containing shared
behavior for points. That object in turn
appeals to another (on top) for behavior
that is shared by all objects. This “root”
object fully describes its own format and
behavior, so it has no parent.

Each Smalltalk point contains a class
pointer and x and y coordinates. The
class Point supplies both format (a list of
instance variables) and behavior infor-
mation (a collection of methods) for
points. Additional format and behavior
information is inherited from Object via
Point’s superclass link. Each of the two
classes in turn must appeal to other
classes (not shown) for their format and
behavior.

Credits: Ungar and Smith 1991, p. 4

6 UNGAR AND SMITH

point

clone

(class)

(superclass)

(inst vars)

(methods)

(name) Point

class, x, y

how to

(class)

(inst vars)

(methods)

(superclass)

name,

new make objects

x

x:

y

y:

parent*

0

!

0

!

parent*

how to
clone objects

Creating a SELF object

. . .

. . .

Creating a Smalltalk object

. . .

superclass,
inst vars,
methods

(class)

(inst vars)

(methods)

(superclass)

name,

. . .

superclass,
inst vars,
methods

To create a new point in SELF, the clone
message is sent to the prototypical point.
The clone method copies its receiver.
Because the point slot resides in the root,
any object can create a point.

. . .

. . .

Figure 2. Object creation in Smalltalk and in SELF.

To create a new point in Smalltalk, the
new message is sent to the class Point.
The new method—found in Point’s
class’s superclass—uses information in
its receiver (Point) to define the size and
format of the new object.

Credits: Ungar and Smith 1991, p. 6

Other Contributions of Self
• Many researchers who worked on Self helped develop virtual machines and

compilers for improving the performance of Self and other dynamically-typed
object-oriented programming languages.

• Much of the compiler/VM work for Self, as well as a strongly-typed variant of
Smalltalk named Strongtalk, was applied by Sun Microsystems to develop the
official Java VM (codenamed HotSpot).

• Research was also done on how to best organize programs without classes (I
recommend the 1991 paper "Organizing Programs Without Classes" by Ungar
et al.) and also on GUI-driven programming (see the 1995 paper "The Self-4.0
User Interface" by Smith, Maloney, and Ungar).

The language most influenced by
Self is JavaScript.

JavaScript is one of the most
deployed languages on Earth.

Yet JavaScript is the blunt of
many jokes.

What's 2 + "3" in JavaScript?

Credit: https://www.reddit.com/r/ProgrammerHumor/comments/621qrt/javascript_the_good_parts/

Begin Rant

Common Lisp Object System
• Common Lisp is a multi-paradigm

programming language that is the
descendant of Lisp variants dating all the
way back to the original version.

• CLOS has interesting features that are not
in Java, JavaScript, Python, and other
widely-used OO languages, such as
multiple dispatch.

• Yes, CLOS has classes.

• Common Lisp is a highly flexible language.
Aside from functions and macros, the
metaobject protocol can be used to extend
the language, and CLOS is implemented
using MOP.

Next Lecture Preview

Alan Kay has praised this
book. This book is quite a
heavy read, however.

