
Procedural Programming Structured Programming Preview of Next Lecture

Procedural and Structured Programming

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

August 25, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Table of Contents

1 Procedural Programming
FORTRAN
ALGOL

2 Structured Programming

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Table of Contents

1 Procedural Programming
FORTRAN
ALGOL

2 Structured Programming

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Procedural Paradigm

The procedural paradigm of programming emphasizes step-by-step
instructions that are generally1 executed sequentially.

1I say “generally“ because there’s out-of-order instruction execution on
modern CPUs.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Instruction Set

Each processor has its own instruction set that defines the
instructions that the processor understands.

Examples of modern instruction set architectures include (but
are not limited to):

x86-64 (aka AMD64, the most commonly used ISA in PCs)
ARM (used in many devices, including the Apple iPhone, the
Raspberry Pi, and new Macs)
RISC-V (an open-source ISA that is growing in popularity)
POWER (used by Macs from 1994-2006 and is currently used
in high-end servers)
SPARC (also used in some high-end servers)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

The Anatomy of an Instruction

An instruction is represented as a sequence of binary digits
that contain information that the CPU uses to execute the
instruction.

A program is a sequence of instructions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Problems with Coding in Machine Code

Tedious

Error-prone

Hard to read

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Assembly Language

Instead of coding in binary digits, code in symbolic
representations of the instructions.

Symbolic labels aid the programmer in grouping instructions
and for performing branches.

Use an assembler to convert assembly language code to
machine code.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Advantages of Assembly Language

Easier to write and read programs than machine code.

Less error-prone.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Fundamental Limitation of Assembly Language

Assembly language is merely a very thin wrapper over machine
code. Programming in either machine code or assembly language
requires thinking about the problem in terms of the machine.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Goal: What if we can think more in terms of the problem that we
want to solve and less in terms of the architectural details of the
CPU?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

The FORTRAN Programming Language

Work started on the language in early 1954 at IBM’s
then-headquarters in New York City; released in April 1957
[Backus 1981].

The name derives from “The IBM Mathematical FORmula
TRANslating System.”

The original version of FORTRAN (retroactively called
FORTRAN I) was designed to run on the IBM 704, a
computer that can compute approximately 10,000 operations
per second [Programmer’s Primer for FORTRAN Automatic
Coding System for the IBM 704, 1957, p. 2].

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

Quote about How FORTRAN Was Designed

“As far as we were aware, we simply made up the
language as we went along.”

—John Backus, “The History of Fortran I, II, and III,”
1981

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

Design Goals of FORTRAN

“[O]ne of our goals was to design a language which
would make it possible for engineers and scientists to
write programs themselves for the 704. We also wanted
to eliminate a lot of the bookkeeping and detailed,
repetitive planning which hand coding involved. Very
early in our work we had in mind the notions of
assignment statements, subscribed variables, and the DO
statement (which I believe was proposed by Herrick). We
felt that these provided a good basis for achieving our
goals for the language, and whatever else was needed
emerged as we tried to build a way of programming on
these basic ideas.”

—John Backus, “The History of Fortran I, II, and III,”
1981

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

FORTRAN I Example

Page 15 of Programmer’s Primer for FORTRAN Automatic Coding
System for the IBM 704 has the following example:

Quadratic Formula Example

Given values a, b, c , and d punched on a card, and a set of values
for the variable x punched one per card, evaluate the function
defined by

f (x) =

ax2 + bx + c if x < d

0 if x = 0

−ax2 + bx − c if x > d

for each value of x , and print x and f (x).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

FORTRAN I Example

10 READ 1, A, B, C, D

11 READ 1, X

12 IF (X-D) 13, 15, 17

13 FOFX = A*X**2. + B*X + C

14 GO TO 18

15 FOFX = 0.

16 GO TO 18

17 FOFX = -A*X**2. + B*X - C

18 PRINT 1, X, FOFX

19 GO TO 11

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

FORTRAN I Example

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

FORTRAN I IF Statement

IF E LBL1, LBL2, LBL3

Evaluates the expression E .

GO TO

LBL1 if E < 0

LBL2 if E = 0

LBL3 if E > 0

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

Another FORTRAN I Example

From page 49 of Programmer’s Primer for FORTRAN Automatic
Coding System for the IBM 704:

Matrix Multiplication Example

Given the matrix A with dimensions 10× 15 and the matrix B with
dimensions 15× 12, compute the elements Cij of the matrix
C = AB. To compute any element Cij , select the i row of A and
the j column of B, and sum the products of their corresponding
elements. The general formula for this computation is

Cij =
15∑
k=1

AikBkj

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

Another FORTRAN I Example

DIMENSION A(10, 15), B(15, 12), C(10, 12)

3 FORMAT (5E14.5)

READ 3, A, B

4 DO 30 I = 1, 10

5 DO 30 J = 1, 12

6 C(I,J) = 0.0

10 DO 20 K = 1, 15

20 C(I,J) = C(I,J) + A(I,K)*B(K,J)

30 PRINT 50, I, J, C(I,J)

50 FORMAT (2I5, E16.7)

60 STOP

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

FORTRAN I DO Statement

DO LIMIT VAR = BEGIN, END[, STEP]

Executes lines up to and including LIMIT while VAR is between
BEGIN and END (inclusive). VAR is incremented by 1 unless STEP is
specified, in which the amount that VAR is incremented is the value
of STEP.
DO loops also have support for CONTINUE statements, which works
just like it does in Java and later programming languages.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

Features of FORTRAN I

Variables, including reassignment

Various arithmetic operators and built-in mathematical
functions

Support for integer and floating-point numbers

Arrays (including native multi-dimensional arrays)

I/O from punch cards, tape storage, and drum storage (the
main memory of the 704)

IF and DO statements

GO TO

Functions (note that recursion wasn’t supported); would be
further refined in FORTRAN II, released in 1958.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

FORTRAN

Summary of FORTRAN I

FORTRAN I revolutionized programming by enabling
programmers to express their code in a manner that was less
tied to the idiosyncrasies of the machine.

Led to the development of many other languages that were
targeted toward specific types of users (e.g., COBOL was
targeted to business users).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

Designing ALGOL

Around the time FORTRAN was released, there was quite a
flurry of programming languages being developed for all sorts
of machines.

Facing the prospect of a plethora of incompatible languages,
in 1958 delegates from the Association for Computing
Machinery (ACM) met with delegates from the Gesellschaft
für angewandte Mathematik und Mechanik (GAMM), a
German society for applied math and mechanics, to design a
common programming language.

John Backus, the leader of the team that developed
FORTRAN, was one of the ACM delegates.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

Design Goals of ALGOL

Can be implemented on a variety of machines

Can meet the programming needs of scientists and engineers

Be a compelling improvement over existing languages such as
FORTRAN.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

ALGOL 58

Notable features included:

Integer, real, and boolean data types, along with arrays of
these types

switch and for statements

if either ... or if ... end syntax for conditional
statements.

Compound statements

Functions and procedures

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

Difference between a Function and a Procedure in ALGOL
58

To define the difference succinctly,

A function is an identifier and a list of parameters that are
mapped to an expression.

A procedure is an identifier and a list of parameters that are
mapped to a statement.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

Shortcomings of ALGOL 58

Certain parts of the language were underspecified or omitted (most
notably I/O support), resulting in the language specification being
treated more like a collection of suggestions and less like a
standard to comply to [Alan J. Perlis, “The American Side of the
Development of ALGOL,” 1981].

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

Point of View from Alan J. Perlis

“It should be remembered that the Zurich report was a
draft. Algol58 was not intended to be the language
around which international conformity would immediately
congeal. But it was a skeleton, internationally conceived,
from which constructive improvements would lead to the
sought after uniform language.”

Alan J. Perlis, “The American Side of the Development
of ALGOL,” 1981

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

That sought-after uniform language would be ALGOL 60.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

ALGOL 60

Notable features included:

Blocks (replaced ALGOL 58’s compound statements) and
lexical scoping

Dropped the distinction between functions and procedures in
ALGOL 58

Recursive procedure calls

Call by value and call by name semantics

if either ... or if ... end syntax replaced with
more familiar if ... else ... syntax.

It was also the first programming language to be defined using
Backus-Naur Form, a notation for defining context-free grammars.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

ALGOL 60 Examples

Examples are from “Revised Report on the Algorithmic Language
ALGOL 60” [Naur et al. 1960]:

comment Example of a procedure definition

procedure Spur (a) Order: (n); value n;

array a; integer n; real s;

begin integer k;

s:=0;

for k:=1 step 1 until n do s:=s+a[k,k]

end

comment Example of a procedure call

Spur (A) Order: (7) Result to: (V)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

ALGOL 60 Examples

Examples are from “Revised Report on the Algorithmic Language
ALGOL 60” [Naur et al. 1960]:

procedure Absmax (a) Size: (n, m) Result: (y)

Subscripts: (i, k);

array a; integer n, m, i, k; real y;

begin integer p, q;

y := 0;

for p:=1 step 1 until n do for q:=1 step 1 until m do

if abs(a[p,q]])>y then begin y:=abs(a[p,q]);

i:=p; k:=q end end Absmax

Absmax (A, N, M, Yy, I, K)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

Shortcomings of ALGOL 60

No standardized I/O facilities, which hampered portability.

The use of symbols that did not exist on many keyboards.

There were some ambiguities in the language; see Donald
Knuth’s 1967 paper “The Remaining Trouble Spots in ALGOL
60.”

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

ALGOL

Influence of ALGOL 60

ALGOL 60 was used for decades by academics to describe
algorithms, and it inspired the design of other programming
languages, including ALGOL 68 (a rather large programming
language that wasn’t as influential as ALGOL 60 but is still an
influence), BCPL (the grandfather of C), Pascal (which was
commonly used in introductory programming courses in many
universities from the 1970s until the mid-1990s), and Simula (the
first object-oriented programming language, which influenced
C++).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Table of Contents

1 Procedural Programming
FORTRAN
ALGOL

2 Structured Programming

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

“Go-to Statement Considered Harmful”

This is “the shot heard ’round the world” in the history of
computer programming, one of the most influential papers
written in the field.

So, why exactly, are GO TO statements bad?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

“Go-to Statement Considered Harmful”

When your program has no GO TO statements, it is easy to
determine the current runtime state of the program by keeping
track of the current line of code (program location) and the state
of declared variables. Dijkstra refers to this as “the progress of the
process.”

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

“Go-to Statement Considered Harmful”

However, once your program introduces GO TO statements, it
becomes more difficult, sometimes impossible, to determine the
progress of the process simply by keeping track of the program’s
current location and the state of the program’s declared variables.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Structured Programming

Definition (Structured Programming)

An approach to procedural programming where programs are
written in such a way where it is possible to determine a program’s
progress simply by keeping track of the program’s current location
and the state of the program’s declared variables.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Tenets of Structured Programming

Only one entry and exit per procedure or loop.

No BREAK statements.
One RETURN statement per procedure.

No GO TO statements.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Does this code adhere to the structured programming paradigm?

pub l i c i n t l i n e a r S e a r c h (i n t [] i tems , i n t key) {
f o r (i n t i = 0 ; i < i t e m s . l e n g t h ; i ++) {

i f (i t e m s [i] == key)
return i ;

}
return −1;

}

No. It is not structured because there are two return statements
in the method.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Does this code adhere to the structured programming paradigm?

pub l i c i n t l i n e a r S e a r c h (i n t [] i tems , i n t key) {
f o r (i n t i = 0 ; i < i t e m s . l e n g t h ; i ++) {

i f (i t e m s [i] == key)
return i ;

}
return −1;

}

No. It is not structured because there are two return statements
in the method.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Here is a version that adheres to the structured programming
paradigm:

pub l i c i n t l i n e a r S e a r c h (i n t [] i tems , i n t key) {
i n t i n d e x = −1;
f o r (i n t i = 0 ; i < i t e m s . l e n g t h && i n d e x == −1;

i ++) {
i f (i t e m s [i] == key)

i n d e x = i ;
}
return i n d e x ;

}

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Why Structured Programming?

Structured programming makes it easier to reason about programs
in a mathematical fashion, thus making them easier to formally
prove their correctness.

“Program testing can be used to show the presence of
bugs, but never to show their absence!”

—Edsger W. Dijkstra, Structured Programming, 1972, p.
6

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Structured Programming in Practice

Adopted heavily since the 1970s, to the point that some
procedural programming languages such as Java and Python
lack GO TO statements.

Exceptions are made for break and for exceptions (e.g.,
throw in C++ and Java).

Some style guides allow for the use of GO TO (in languages
that have it) for breaking out of nested loops.

GO TO statements are used quite frequently in the Linux
kernel, which is written in C.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

Table of Contents

1 Procedural Programming
FORTRAN
ALGOL

2 Structured Programming

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

Procedural Programming Structured Programming Preview of Next Lecture

The topics that will be covered during the next lecture include:

Parsing

Context-free Grammars

Abstract Syntax Trees

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Procedural and Structured Programming

	Procedural Programming
	FORTRAN
	ALGOL

	Structured Programming
	Preview of Next Lecture

