
Functional Programming Scheme Preview of Next Lecture

Functional Programming and the Scheme
Programming Language

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

September 13, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Table of Contents

1 Functional Programming

2 Scheme

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Table of Contents

1 Functional Programming

2 Scheme

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Early procedural programming languages were built from a
standpoint of making programming simpler compared to
programming in assembly language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Structured programming identified patterns in programs written in
procedural programming language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Certain principles of structured programming (e.g., no GO TO)
made it easier to reason about programs in a more mathematical
way.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

From another point of view, we showed in our previous lecture the
lambda calculus, which can express any computable mathematical
function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

It is possible to write programs in the lambda calculus, but it is too
low level to comfortably write full-fledged programs (e.g., no
numbers, no named functions, no strings, etc.).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Is it possible to write programs in a form that is inspired by the
lambda calculus, but with “syntactic sugar” that helps
programmers more easily write programs?

Yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Is it possible to write programs in a form that is inspired by the
lambda calculus, but with “syntactic sugar” that helps
programmers more easily write programs? Yes.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

What is Functional Programming?

Functional programming is a paradigm that emphasizes the
following design and language characteristics:

(Ideally) no side effects.

Immutable variables and data structures.

Higher-order functions.

No distinction between statements and expressions.

A preference for recursion over iteration.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

What is Functional Programming?

Functional programming is a paradigm that emphasizes the
following design and language characteristics:

(Ideally) no side effects.

Immutable variables and data structures.

Higher-order functions.

No distinction between statements and expressions.

A preference for recursion over iteration.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

What is Functional Programming?

Functional programming is a paradigm that emphasizes the
following design and language characteristics:

(Ideally) no side effects.

Immutable variables and data structures.

Higher-order functions.

No distinction between statements and expressions.

A preference for recursion over iteration.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

What is Functional Programming?

Functional programming is a paradigm that emphasizes the
following design and language characteristics:

(Ideally) no side effects.

Immutable variables and data structures.

Higher-order functions.

No distinction between statements and expressions.

A preference for recursion over iteration.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

What is Functional Programming?

Functional programming is a paradigm that emphasizes the
following design and language characteristics:

(Ideally) no side effects.

Immutable variables and data structures.

Higher-order functions.

No distinction between statements and expressions.

A preference for recursion over iteration.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

What is Functional Programming?

Functional programming is a paradigm that emphasizes the
following design and language characteristics:

(Ideally) no side effects.

Immutable variables and data structures.

Higher-order functions.

No distinction between statements and expressions.

A preference for recursion over iteration.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Side Effects

A side effect is a change in state that is not localized to the
function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples

// Java example

public int linearSearch(int[] items, int key) {

int found = -1;

for (int i = 0; i < items.length && found == -1; i++) {

if (items[i] == key)

found = i;

}

return found;

}

Does the function linearSearch have side effects?

No, because
all modified state is local to linearSearch.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples

// Java example

public int linearSearch(int[] items, int key) {

int found = -1;

for (int i = 0; i < items.length && found == -1; i++) {

if (items[i] == key)

found = i;

}

return found;

}

Does the function linearSearch have side effects? No, because
all modified state is local to linearSearch.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples

// JavaScript example

var found = false;

function linearSearch(items, key) {

for (const item of items) {

if (item == key)

found = true;

}

}

Does the function linearSearch have side effects?

Yes, because
it modifies the global variable found.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples

// JavaScript example

var found = false;

function linearSearch(items, key) {

for (const item of items) {

if (item == key)

found = true;

}

}

Does the function linearSearch have side effects? Yes, because
it modifies the global variable found.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples

// Back to Java

public void printBinaryTree(Tree tree) {

if (tree) {

printBinaryTree(tree.left);

System.out.println(tree.contents);

printBinaryTree(tree.right);

}

}

Does the function printBinaryTree have side effects?

Yes,
because println modifies the state of the I/O console.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples

// Back to Java

public void printBinaryTree(Tree tree) {

if (tree) {

printBinaryTree(tree.left);

System.out.println(tree.contents);

printBinaryTree(tree.right);

}

}

Does the function printBinaryTree have side effects? Yes,
because println modifies the state of the I/O console.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples

public int findNextPrime(int n) {

int prime = -1;

for (int i = n + 1; prime == -1; i++) {

if (isPrime(i))

prime = i;

}

return prime;

}

Does the function findNextPrime have side effects?

It depends
on whether isPrime has side effects.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples

public int findNextPrime(int n) {

int prime = -1;

for (int i = n + 1; prime == -1; i++) {

if (isPrime(i))

prime = i;

}

return prime;

}

Does the function findNextPrime have side effects? It depends
on whether isPrime has side effects.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Why Avoid Side Effects?

Makes functions easier to test by making functions just a
mapping between inputs and outputs.

Makes parallelization easy (no shared state means no
synchronization worries)

Makes it easier to mathematically prove the properties of
functions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Why Avoid Side Effects?

Makes functions easier to test by making functions just a
mapping between inputs and outputs.

Makes parallelization easy (no shared state means no
synchronization worries)

Makes it easier to mathematically prove the properties of
functions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Why Avoid Side Effects?

Makes functions easier to test by making functions just a
mapping between inputs and outputs.

Makes parallelization easy (no shared state means no
synchronization worries)

Makes it easier to mathematically prove the properties of
functions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Why Avoid Side Effects?

Makes functions easier to test by making functions just a
mapping between inputs and outputs.

Makes parallelization easy (no shared state means no
synchronization worries)

Makes it easier to mathematically prove the properties of
functions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Are side effects completely avoidable?

No

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Are side effects completely avoidable? No

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

When writing real-world programs, we still need to access I/O
devices, operating system resources, databases, GUI elements, etc.
All of these accesses are side effects.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Thus, we cannot completely avoid side effects when programming.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

However, we can organize the functions in our code in such a way
where we minimize and localize the use of side effects (for
example, separating I/O code from processing logic).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Immutable Variables and Data Structures

In functional programming, all variables and data structures are
immutable. The value assigned to a variable is permanent.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Wait, so what about lists? How do I add a new element to a list?

By returning a new list that is the concatenation of the old list and
a one-element list with the new element.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Wait, so what about lists? How do I add a new element to a list?
By returning a new list that is the concatenation of the old list and
a one-element list with the new element.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

This is not functional code:

public int findNextPrime(int n) {

int prime = -1;

for (int i = n + 1; prime == -1; i++) {

if (isPrime(i))

prime = i;

}

return prime;

}

The culprits are i++ and prime = i.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

This is not functional code:

public int findNextPrime(int n) {

int prime = -1;

for (int i = n + 1; prime == -1; i++) {

if (isPrime(i))

prime = i;

}

return prime;

}

The culprits are i++ and prime = i.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

This is functional code:

public int findNextPrime(int n) {

return findNextPrimeHelper(n + 1);

}

private int findNextPrimeHelper(int n) {

if (isPrime(n))

return n;

else

return findNextPrimeHelper(n + 1);

}

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Why have immutable variables and data structures?

Just as in the
case of avoiding side effects, we simplify the reasoning of programs
when variables and data structures are immutable, especially when
these variables and data structures are not local to the function
that operates on them (and thus would be introducing side effects).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Why have immutable variables and data structures? Just as in the
case of avoiding side effects, we simplify the reasoning of programs
when variables and data structures are immutable, especially when
these variables and data structures are not local to the function
that operates on them (and thus would be introducing side effects).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Higher-Order Functions

In functional programming languages, functions are first-class
objects. This means functions can:

Allocate their own functions (i.e., have embedded functions)

Accept functions as parameters

Return functions

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Sorting Example

Suppose a library offered a sort function that implemented a
sorting algorithm (such as quicksort) and allowed the user to
specify how the sort algorithm will compare values.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Sorting Example – Object Oriented Approach

In Java, which is an object-oriented programming language, we can
either make the objects that we sort implement the Comparable

interface and overload the compareTo method, or we could write a
class that implements the Comparator interface and overload the
compare method.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Sorting Example – Functional Approach

In a functional programming language, we can provide the sort
function a comparison function that works similar to a Java
Comparator’s compare method.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Sorting Example – Functional Approach

int compare(Person p1, Person p2) {

if (p1.surname.equals(p2.surname)) {

return p1.firstname.compareTo(p2.firstname);

} else return p1.surname.compareTo(p2);

}

List<Person> sortedPersons = sort(persons, compare);

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Find Next Prime Example

public int findNextPrime(int n) {

int findNextPrimeHelper(int n) {

if (isPrime(n))

return n;

else

return findNextPrimeHelper(n + 1);

}

return findNextPrimeHelper(n + 1);

}

Note that findNextPrimeHelper is inside of findNextPrime.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

All Language Constructs are Expressions

All language constructs are expressions.

All functions evaluate to an expression.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Recursion over Iteration

In functional programming, there is a preference for recursion
over iteration when looping.

Performing a while or for loop often requires incrementing
or decrementing a variable, which cannot be done when
variables are immutable.

All iterative constructs can be expressed in terms of recursion.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Is the lambda calculus a functional programming language?

<λexpr>::= <var>

|λ <var> . <λexpr>

|(<λexpr> <λexpr>)

Yes, since:

1 There are no side effects.

2 All variables are immutable.

3 There is support for higher-level functions (through lambda
calculus abstractions).

4 All language constructs are expressions.

5 The lambda calculus supports recursion.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Is the lambda calculus a functional programming language?

<λexpr>::= <var>

|λ <var> . <λexpr>

|(<λexpr> <λexpr>)

Yes, since:

1 There are no side effects.

2 All variables are immutable.

3 There is support for higher-level functions (through lambda
calculus abstractions).

4 All language constructs are expressions.

5 The lambda calculus supports recursion.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Is the Arith programming language [Pierce 2002, p. 24] a
functional programming language?

<t> ::= true

| false

| if <t> then <t> else <t>

| 0

| succ <t>

| pred <t>

| iszero <t>

No, because there are no functions in the language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Is the Arith programming language [Pierce 2002, p. 24] a
functional programming language?

<t> ::= true

| false

| if <t> then <t> else <t>

| 0

| succ <t>

| pred <t>

| iszero <t>

No, because there are no functions in the language.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

In the real world, however, many functional languages are
“impure”; they do support side effects and some of them have
support for mutable variables and data structures.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Families of Functional Programming Languages

Dynamically-typed

Lisp and its relatives (e.g., Common Lisp, Scheme, Clojure)

Statically-typed

Standard ML
Haskell
OCaml
F#
Scala

Scheme is the main functional programming language in this
course; however, later in the course I will be introducing a
statically-typed functional programming language to discuss type
systems and advanced functional programming features such as
monads.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

In addition, features from functional programming languages have
been showing up in other programming languages, such as support
for anonymous functions (lambdas) in newer versions of C++,
Java, and JavaScript, as well as the growing popularity of
immutable data structures.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Table of Contents

1 Functional Programming

2 Scheme

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

A Brief History of Lisp

The first version of Lisp was implemented in Fall 1958 [John
McCarthy, “History of Lisp,” p. 7, 1979].

John McCarthy’s 1960 paper “Recursive Functions of
Symbolic Expressions and Their Computation by Machine,
Part I” defined the semantics of Lisp in terms of the lambda
calculus.

Though Lisp was released before ALGOL 60, it already had
support for higher-order functions and recursion.

Lisp is not a pure functional language; it had support for
assignment statements and even GO statements (akin to
Fortran’s GO TO).

Over time a culture of functional programming practices
developed and became embraced by many Lisp programmers.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

More Lisp History

Lisp originated from MIT and was heavily used there,
particularly by MIT’s artificial intelligence researchers.

During the 1960s and 1970s various incompatible
implementations of Lisp emerged (e.g., Maclisp, Interlisp, Lisp
Machine Lisp)

Lisp machines were entire computer architectures that were
specially designed for running Lisp programs, and were
available during the 1970s and 1980s.

In the 1980s there was an effort to unify the various
implementations of Lisp. This led to the development of the
Common Lisp programming language, which is
multi-paradigm and supports procedural, functional, and
object-oriented programming.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Examples of Modern Languages in the Lisp Family

Common Lisp
Industrial-strength, multi-paradigm Lisp

Scheme
Popular Lisp for education and programming language research

Clojure
Lisp that runs on the Java Virtual Machine and can take
advantage of Java’s libraries.
There is also a version of Clojure for Microsoft’s .NET
platform that can use libraries written for that ecosystem.

GNU EMACS Lisp
Used for extending the capabilities of GNU Emacs

Note that these languages are incompatible with each other; the
differences between each of them are like the differences between
C, Java, and JavaScript.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

If Common Lisp can be thought of as a “maximal Lisp,” then
Scheme can be thought of as a “minimal Lisp,” the distillation of
Lisp.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Some Very Simple Scheme Expressions

5

#t

#f

-2.345

"Hello!"

’Hello

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Symbols in Scheme

A symbol is a primitive data type.

Symbols are preceded with a ’ (e.g., ’hello).

Symbols are case-sensitive in Scheme (e.g., (eq? ’hello

’Hello) returns #f)

Please note that ’hello and hello are NOT the same; the
former is a symbol while the latter evaluates to the value
assigned to hello.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Function Calls in Scheme

Scheme uses prefix notation for expressing function calls, just like
the lambda calculus.

(+ 2 5)

(- 1 3)

(* 2 4)

(/ 10 5)

(+ 1 2 3 4 5)

(+ 2 (* 3 4))

(expt 2 (/ 1 2))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Defining Global Variables

We can use the define function to map variable names to values.

Definition

(define name value) maps the symbol name to value.

Example:

(define PI 3.141592)

; find the area of the circle with radius 10

(* PI (expt 10 2))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Defining Functions in Scheme

Definition

(define (function-name arg1 arg2 ... argN)

function-body) defines the function function-name with
arguments arg1 to argN that evaluates to the expression
function-body.

Example:

; find the area of the circle with radius r

(define (circle-area r)

(* PI (expt r 2)))

; compute area of circle with r = 15

(circle-area 15)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Defining Functions in Scheme

Note that a function with no arguments will be defined as
(define (function-name) function-body) and would be
invoked as (function-name).

Please note that
(define f x)

is NOT the same as
(define (f) x)

The former defines a variable f and sets its value to x, while the
latter defines a function f with no arguments that returns x.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Defining Functions in Scheme

Note that a function with no arguments will be defined as
(define (function-name) function-body) and would be
invoked as (function-name).

Please note that
(define f x)

is NOT the same as
(define (f) x)

The former defines a variable f and sets its value to x, while the
latter defines a function f with no arguments that returns x.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Defining Functions in Scheme

Note that a function with no arguments will be defined as
(define (function-name) function-body) and would be
invoked as (function-name).

Please note that
(define f x)

is NOT the same as
(define (f) x)

The former defines a variable f and sets its value to x, while the
latter defines a function f with no arguments that returns x.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Control Flow in Scheme

Definition (if Expression)

(if expr1 expr2 expr3) evaluates expr1 first. If expr1
evaluates to #t (true), then the if expression evaluates to expr2.
Else, the if expression evaluates to expr3. Note that the presence
of expr3 is optional.

Examples:

; compute n!

(define (factorial n)

(if (= n 0)

1

(* n (factorial (- n 1)))))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Control Flow in Scheme

; return the absolute value of a number

(define (my-abs n)

(if (< n 0)

(* -1 n)

n))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Control Flow in Scheme

Definition (cond Expression)

(cond (cond-expr1 action-expr1)

(cond-expr2 action-expr2)

...

(else action-exprN))

Beginning with cond-expr1, it evaluates the expression
cond-exprI. If the condition evaluates to true, then the cond

expression evaluates to action-exprI. When it reaches else, the
cond expression evaluates to action-exprN.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Boolean Functions in Scheme

Scheme has the logical Boolean functions and, or, and not. and

and or take an unlimited number of arguments. and and or are
short-circuiting; they finish evaluating the first time they reach an
argument that evaluates to false or true, respectively.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Looping in Scheme

Scheme offers a do loop, but recursion is the style that we will be
doing in this course.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Table of Contents

1 Functional Programming

2 Scheme

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Lists in Scheme

Lists are the core data structure of Scheme and other programming
languages in the Lisp family. In fact, the programs we write in
Scheme are collections of S-expressions, which are mostly lists
(except for primitive elements). Scheme programs can be thought
of as abstract syntax trees. We will be spending a good deal of
time in the next lecture covering lists in Scheme.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language



Functional Programming Scheme Preview of Next Lecture

Other Very Important Scheme Topics

Anonymous Functions with lambda

Local Variables with let and let*

Tail Recursion

Map, Filter, and Fold Functions

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Functional Programming and the Scheme Programming Language


	Functional Programming
	Scheme
	Preview of Next Lecture

