
Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

The Scheme Programming Language (continued)

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

September 15, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Table of Contents

1 Lists

2 Anonymous Functions

3 Local Variables

4 Tail Recursion

5 Map, Filter, and Fold

6 DrRacket Demo

7 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Table of Contents

1 Lists

2 Anonymous Functions

3 Local Variables

4 Tail Recursion

5 Map, Filter, and Fold

6 DrRacket Demo

7 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Programming languages that are part of the Lisp family have
foundational support for lists.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

List are implemented as linked lists.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

cons Cell

We can access the left side of the cons cell using the car

function.

We can access the right side of the cons cell using the cdr

functions.

The names car and cdr are historical hardware references
dating back to the 1950s.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

cons Cell

We can access the left side of the cons cell using the car

function.

We can access the right side of the cons cell using the cdr

functions.

The names car and cdr are historical hardware references
dating back to the 1950s.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

cons Cell

We can access the left side of the cons cell using the car

function.

We can access the right side of the cons cell using the cdr

functions.

The names car and cdr are historical hardware references
dating back to the 1950s.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

cons Cell

We can access the left side of the cons cell using the car

function.

We can access the right side of the cons cell using the cdr

functions.

The names car and cdr are historical hardware references
dating back to the 1950s.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

cons Cell

cons cells can be used to store pairs of objects.

Example: (cons 2 3) => ’(2 . 3) (note the dot syntax)

cons cells are more often used for making lists

First element is typically a value, while the second element is
either another cons cell or an empty list ’().
Example: (cons 1 (cons 2 (cons 3 ’()))) => ’(1 2 3)

(first ’(1 2 3)) => 1

(rest ’(1 2 3)) => ’(2 3)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

first and rest vs. car and cdr

Use first and rest for lists.

In Racket, you must use car and cdr for non-list cons cells.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

S-expressions

An S-expression is one of the following:

A primitive (e.g., a number, a string, a symbol)

A list without dots (e.g., (1 3 5) and (+ x y))

A list in dot notation (e.g., ’(1 . (3 . (5 . ())))

Special dot notation case: (1 3 5 . 7)

Equivalent to (1 . (3 . (5 . 7)))

A Lisp program is a collection of S-expressions.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

What is the difference between (+ 2 4) and ’(+ 2 4)

(+ 2 4) is interpreted to call the function + with arguments 2 and
4. In the case of ’(+ 2 4), the ’ tells the interpeter not to
evaluate what’s after it, and so it returns the list (+ 2 4)

unevaluated.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

What is the difference between (+ 2 4) and ’(+ 2 4)

(+ 2 4) is interpreted to call the function + with arguments 2 and
4. In the case of ’(+ 2 4), the ’ tells the interpeter not to
evaluate what’s after it, and so it returns the list (+ 2 4)

unevaluated.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Quoting

’ is shorthand for the quote function.

Example: ’x is equivalent to (quote x).
’(1 3 5) is the equivalent of (quote (1 3 5)).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Operations on Lists

cons can easily be used to add to the front of a list, returning
a new list.

Example: (cons 1 ’(2 3)) => ’(1 2 3)

Use the append function to concatenate two lists.

Example: (append ’(1 2) ’(3 4)) => ’(1 2 3 4)

Use the length function to get the length of the list.

Use the empty? function to check if the list is empty.

reverse reverses a list.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Iterating Over Lists

Since we are coding in functional programming style, we need to
use recursion. Thankfully, first and rest make it easy to write
list-traversal code in an easy-to-use manner.

; Return the sum of the elements in elem

(define (element-sum elems sum)

(if (empty? elems)

sum

(element-sum (rest elems) (+ sum (first elems)))))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Iterating Over Lists

Since we are coding in functional programming style, we need to
use recursion. Thankfully, first and rest make it easy to write
list-traversal code in an easy-to-use manner.

; Return the sum of the elements in elem

(define (element-sum elems sum)

(if (empty? elems)

sum

(element-sum (rest elems) (+ sum (first elems)))))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Table of Contents

1 Lists

2 Anonymous Functions

3 Local Variables

4 Tail Recursion

5 Map, Filter, and Fold

6 DrRacket Demo

7 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Anonymous Functions with lambda

Definition (lambda)

(lambda (arg1 ... argN) function-body) creates an
anonymous function with arguments arg1 to argN that evaluates
function-body.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Example of Usage of Anonymous Functions

Remember the sort comparison I gave during the last function?
Here is an example of using one

(sort ’(3 2 5 4)

(lambda (a b)

(cond ((< a b) -1)

((> a b) 1)

(else 0))))

We are passing a custom comparison function that sort can use to
compare two numbers. (Note that this is a custom sort function,
not Racket’s built-in sort.)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

It turns out that
(define (function-name arg1 ... argN) function-body)

is simply syntactic sugar for

(define function-name

(lambda (arg1 ... argN) function-body))

In order words, we assign an anonymous function a name.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

(define (normal-compare a b)

(cond ((< a b) -1)

((> a b) 1)

(else 0)))

(sort ’(3 2 5 4) normal-compare)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Table of Contents

1 Lists

2 Anonymous Functions

3 Local Variables

4 Tail Recursion

5 Map, Filter, and Fold

6 DrRacket Demo

7 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Technically we could define variables using lambda by declaring
unused function arguments:

; Computes the hypotenuse z = sqrt(x^2 + y^2)

(define (hypotenuse x y)

((lambda (xs ys)

(expt (+ xs ys) 0.5))

(expt x 2) (expt y 2)))

xs is set to the result of (expt x 2), and ys is set to the result
of (expt y 2).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Scheme provides syntactic sugar for defining local variables. We
can use let to define local variables.

Definition (let)

(let ((var1 def1) ... (varN defN)) expr) defines the
variables var1 = def1 to varN = defN, where def1 to defN are
expressions. expr is able to use these variables.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

; Computes the hypotenuse z = sqrt(x^2 + y^2)

(define (hypotenuse x y)

(let ((xs (expt x 2))

(ys (expt y 2)))

(expt (+ xs ys) 0.5)))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

What is wrong with this code?

; double the numbers in a list

(define (double-list elems)

(if (empty? elems)

’()

(let ((elem (first elems))

(double-elem (* elem 2)))

(cons double-elem (double-list (rest elems))))))

The culprit is in the definition of double-elem. The value of
double-elem is set to (* elem 2). The problem, though, is that
we cannot evaluate elem because let definitions have no access to
variables defined by that same let.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

What is wrong with this code?

; double the numbers in a list

(define (double-list elems)

(if (empty? elems)

’()

(let ((elem (first elems))

(double-elem (* elem 2)))

(cons double-elem (double-list (rest elems))))))

The culprit is in the definition of double-elem. The value of
double-elem is set to (* elem 2). The problem, though, is that
we cannot evaluate elem because let definitions have no access to
variables defined by that same let.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Here is one possible solution:

; double the numbers in a list

(define (double-list elems)

(if (empty? elems)

’()

(let ((elem (first elems)))

(let ((double-elem (* elem 2)))

(cons double-elem (double-list (rest elems)))))))

We could have a let embedded in a let, which solves the scoping
problem, but this can get unwieldy for long lists of definitions with
dependencies.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

; double the numbers in a list

(define (double-list elems)

(if (empty? elems)

’()

(let* ((elem (first elems))

(double-elem (* elem 2)))

(cons double-elem (double-list (rest elems))))))

A better solution is let*, which allows the definition of variables
that depend on previous variable definitions within the same let*

definition list.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

We can set anonymous functions to variables using let and let*:

(define (normal-sort elems)

(let ((compare (lambda (a b)

(cond ((< a b) -1)

((> a b) 1)

(else 0)))))

(sort elems compare)))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Be cautious about declaring recursive functions inside of a let or a
let*. The following code does not work:

(define (factorial n)

(let ((fact (lambda (x answer)

(if (<= x 1)

answer

(fact (- x 1) (* x answer))))))

(fact n 1)))

It does not work because the lambda has no access to fact. To
get it to work, we replace let or let* with letrec.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

(define (factorial n)

(letrec ((fact (lambda (x answer)

(if (<= x 1)

answer

(fact (- x 1) (* x answer))))))

(fact n 1)))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Summary

Scheme has a family of functions used for defining local
variables: let, let*, and letrec.

Use let when defining local variables that have no
dependencies on other local variables defined in the same let

scope.

Use let* when defining local variables that depend on
previously-defined variables within the same let* list.

Use letrec when defining recursive local functions using
lambda.

When in doubt, use letrec, but stylistically use the most
restrictive function of the let family applicable to your
program (e.g., don’t use a let* when a let is appropriate).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Table of Contents

1 Lists

2 Anonymous Functions

3 Local Variables

4 Tail Recursion

5 Map, Filter, and Fold

6 DrRacket Demo

7 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

The Downside of Recursion

In functional programming, recursion is the preferred way of
performing repetitive tasks that would normally be
implemented as loops in procedural programs.

However, deep levels of recursion could result in a stack
overflow error, caused by too many function calls on the call
stack.

To solve this problem, we can use tail recursion.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

The Downside of Recursion

In functional programming, recursion is the preferred way of
performing repetitive tasks that would normally be
implemented as loops in procedural programs.

However, deep levels of recursion could result in a stack
overflow error, caused by too many function calls on the call
stack.

To solve this problem, we can use tail recursion.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

The Downside of Recursion

In functional programming, recursion is the preferred way of
performing repetitive tasks that would normally be
implemented as loops in procedural programs.

However, deep levels of recursion could result in a stack
overflow error, caused by too many function calls on the call
stack.

To solve this problem, we can use tail recursion.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Tail Recursion

Tail recursion is a style of recursion where the final call of a
recursive function is a call to itself.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Recursion vs. Tail Recursion

Without tail recursion:

(define (factorial n)

(if (<= n 1) 1 (* n (factorial (- n 1)))))

The reason why this is not tail recursive is because when n ≥ 1,
factorial’s final (tail) function call is *.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Recursion vs. Tail Recursion

Without tail recursion:

(define (factorial n)

(if (<= n 1) 1 (* n (factorial (- n 1)))))

The reason why this is not tail recursive is because when n ≥ 1,
factorial’s final (tail) function call is *.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

With tail recursion

(define (factorial n)

(letrec ((fact (lambda (x answer)

(if (<= x 1)

answer

(fact (- x 1) (* x answer))))))

(fact n 1)))

The reason why this is tail recursive is because when n ≥ 1, fact’s
final (tail) function call is fact.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

With tail recursion

(define (factorial n)

(letrec ((fact (lambda (x answer)

(if (<= x 1)

answer

(fact (- x 1) (* x answer))))))

(fact n 1)))

The reason why this is tail recursive is because when n ≥ 1, fact’s
final (tail) function call is fact.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Another example of tail recursion:

(define (my-length elems)

(letrec ((my-len (lambda (e len)

(if (empty? e)

len

(my-len (rest e) (+ 1 len))))))

(my-len elems 0)))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Why Tail Recursion

Scheme and many other functional programming language
interpreters offer tail call optimization that is able to detect
tail recursion and execute them in such a way where it is
essentially a do loop, thus avoiding the repeated use of the
call stack and thus avoiding stack overflow errors.

Standards-compliant Scheme interpreters must implement tail
call optimization.

We’ll learn more about the implementation details when we
cover virtual machines and compilation in two weeks.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Table of Contents

1 Lists

2 Anonymous Functions

3 Local Variables

4 Tail Recursion

5 Map, Filter, and Fold

6 DrRacket Demo

7 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Functional programming style involves a lot of recursive list
traversals.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

What if the language provided library functions that facilitated
common patterns, such as:

Performing an operation on all elements of the list (e.g.,
doubling all the numbers, or making all strings in a list
uppercase)

Removing elements from a list (e.g., removing a list of all
non-prime numbers)

Performing an aggregate operation on a list returning a single
element (e.g., adding all numbers in a list)

We have these features in Scheme: map, filter, and fold
(respectively)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

What if the language provided library functions that facilitated
common patterns, such as:

Performing an operation on all elements of the list (e.g.,
doubling all the numbers, or making all strings in a list
uppercase)

Removing elements from a list (e.g., removing a list of all
non-prime numbers)

Performing an aggregate operation on a list returning a single
element (e.g., adding all numbers in a list)

We have these features in Scheme: map, filter, and fold
(respectively)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Map Function

Definition (map)

(map function list1 ... listN) applies function to all
elements of each list list1 to listN, where each list element
serves as an argument to function. For example, if there are N
lists, then there are N arguments to function.

Example

; Answer is ’(1 4 9 16 25)

(map (lambda (x) (* x x)) ’(1 2 3 4 5))

; Answer is ’(5 7 9)

(map + ’(1 2 3) ’(4 5 6))

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Filter Function

Definition (filter)

(filter function list) applies function (with one
argument) to each element of list, constructing a new list where
function returned #t.

Example

(filter even? ’(1 2 3 4 5)) => ’(2 4)

(filter (lambda

(x) (= (remainder x 3) 0))

’(1 2 3 4 5 6 7 8 9 10)) => ’(3 6 9)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Sadly, R5RS Scheme does not contain a filter function, but
newer Schemes such as R6RS Scheme and Racket do, and it is
simple to define our own version.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

foldl and foldr

CAUTION: In Racket these are known as foldl and foldr, but in
R6RS Scheme these are fold-left and fold-right.
Unfortunately these are unavailable in R5RS Scheme, but once
again these functions are trivial to define.

Definition

foldl and foldr (foldl function init list1 ... listN)

and (foldr function init list1 ... listN) apply
function to the elements of lists list1 to listN. function
accepts N + 1 arguments, where one of the arguments is init,
which is the accumulated aggregate value. foldl starts from the
left, while foldr starts from the right.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Examples

; Return the sum of all elements in the list

(foldl + 0 ’(1 2 3 4))

The above code is the equivalent of performing the sum 0 + 1
(where 0 is from the init parameter) and storing the result in
init, then 1 + 2, then 3 + 3, then finally 6 + 4, resulting in 10.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Examples

(foldl

(lambda (x count)

(if (even? x)

(+ 1 count)

count))

0

’(1 2 3 4 5 6 7 8 9 10))

The above code counts the number of even numbers between 1
and 10.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Table of Contents

1 Lists

2 Anonymous Functions

3 Local Variables

4 Tail Recursion

5 Map, Filter, and Fold

6 DrRacket Demo

7 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Quicksort Demo

I will be giving a demo of Quicksort implemented in Scheme using
the DrRacket IDE.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Table of Contents

1 Lists

2 Anonymous Functions

3 Local Variables

4 Tail Recursion

5 Map, Filter, and Fold

6 DrRacket Demo

7 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)



Lists Anonymous Functions Local Variables Tail Recursion Map, Filter, and Fold DrRacket Demo Preview of Next Lecture

Topics To Be Covered

The Concept of State in Programming

Mutation in Scheme

Environments (used for evaluation purposes)

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

The Scheme Programming Language (continued)


	Lists
	Anonymous Functions
	Local Variables
	Tail Recursion
	Map, Filter, and Fold
	DrRacket Demo
	Preview of Next Lecture

