
Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Building an Evaluator

Michael McThrow

San Jose State University
Computer Science Department

CS 152 – Programming Paradigms

September 22, 2021

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Table of Contents

1 Interpreters in General

2 Building a Scheme Interpreter

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Table of Contents

1 Interpreters in General

2 Building a Scheme Interpreter

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

What Is an Interpreter?

An interpreter (a.k.a., evaluator) evaluates a sequence of
expressions.

The difference between an interpreter and a compiler is that
an interpreter runs the program, while a compiler translates
expressions to another language, usually assembly language or
machine code.

CS 152 focuses on interpreters; however, we will explore the
basics of compilation next week. CS 153 is a full-fledged
course on compilers.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

What Is an Interpreter?

An interpreter (a.k.a., evaluator) evaluates a sequence of
expressions.

The difference between an interpreter and a compiler is that
an interpreter runs the program, while a compiler translates
expressions to another language, usually assembly language or
machine code.

CS 152 focuses on interpreters; however, we will explore the
basics of compilation next week. CS 153 is a full-fledged
course on compilers.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

What Is an Interpreter?

An interpreter (a.k.a., evaluator) evaluates a sequence of
expressions.

The difference between an interpreter and a compiler is that
an interpreter runs the program, while a compiler translates
expressions to another language, usually assembly language or
machine code.

CS 152 focuses on interpreters; however, we will explore the
basics of compilation next week. CS 153 is a full-fledged
course on compilers.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Flowchart

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

You already have experience writing an interpreter via Project 1,
where you wrote a calculator that can handle postfix and infix
expressions. Now, let’s walk through how you’d write an
interpreter for a full-fledged programming language: Scheme.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Table of Contents

1 Interpreters in General

2 Building a Scheme Interpreter

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Basic Scheme Functions

All operations in Scheme, such as define, cond, car,
display, are function calls.

But which functions must be built (hardcoded) into the
interpreter?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Built-in Scheme Functions

It turns out that we can write a minimal Scheme interpreter that
implements the following built-in (hardcoded) functions:

define

lambda

quote

if or cond

cons, car, cdr.

Equality and inequality functions

Logical operators (e.g., and, or, not)

Basic arithmetic operators

Type predicates

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

How do we go about writing a Scheme interpreter?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Step 1: Parsing

A Scheme program is a sequence of S-expressions. Each
S-expression has the following (simplified) grammar:

<S-expr> ::= <atomic-symbol>

| ’(’ <S-expr> ’.’ <S-expr> ’)’

| ’(’ (<S-expr>)+ ’)’

where <atomic-symbol> could be an alphanumerical value with
some special characters supported. Note that the special quote
syntax is not in this grammar definition. Note that there is an odd
exception: (1 2 3 . 4) is valid in Scheme, which is equivalent
to (cons 1 (cons 2 (cons 3 4))).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Step 1: Parsing

Thankfully, for Project 3, you don’t have to write your own
S-expression parser; Scheme has a built-in one called read that
inputs a string and outputs an S-expression that is a list of
symbols.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Step 2: Evaluating the AST

Another big advantage of building an interpreter in Scheme:
S-expressions make a nice AST.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Example of an AST

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Example of an AST

If we weren’t using Scheme, we’d have to construct our own AST
by traversing the parse tree. Here is a possible Java example:

// FuncCall, Symbol, and Number all implement

// the AST interface

AST ast = new FuncCall(new Symbol("sqrt"),

new ArgsList(new FuncCall(new Symbol("expt"), args1),

new ASTList(

new Symbol("x"),

new Number(2))),

new FuncCall(new Symbol("expt"),

new ASTList(

new Symbol("y"),

new Number(2)))));

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Environments

Remember our last lesson on environments? Environments are
crucial to the construction of a Scheme evaluator.

Recall that an environment consists of a frame (a table of
mappings of names to values) and a reference to its enclosing
environment.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Environments

Remember our last lesson on environments? Environments are
crucial to the construction of a Scheme evaluator.

Recall that an environment consists of a frame (a table of
mappings of names to values) and a reference to its enclosing
environment.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Example of a Java Implementation of an Environment

public class Environment {

private HashMap<String, AST> frame;

private Environment enclosing;

}

Note that you have many implementation choices; for example, the
frame doesn’t have to be a HashMap (it could be any type of data
structure that enables lookups), and you don’t need to have a
literal reference/pointer to an Environment object; you could
assign each environment an ID value and maintain a global
mapping between IDs and Environment objects.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Environments

The global environment will remain throughout the lifetime of the
interpreter. Recall that the global environment has no enclosing
environment.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Let’s begin evaluating simple Scheme expressions, starting with
simple literals.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Numbers and Boolean Values

Numbers evaluate to themselves, just like in the Project 1
calculator.

Example: 5 ⇒ 5

Example: 3.141593 ⇒ 3.141593

Example: -2.4 ⇒ -2.4

Boolean values #t and #f also evaluate to themselves

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Unquoted Symbols

What happens when the interpreter encounters an unquoted
symbol, such as x or PI?

The interpreter performs an environment lookup in order to get the
value associated with the symbol.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Unquoted Symbols

What happens when the interpreter encounters an unquoted
symbol, such as x or PI?

The interpreter performs an environment lookup in order to get the
value associated with the symbol.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Environment Lookup in Java

// method inside Environment class

public AST lookup(String name) {

AST value = frame.get(name);

if (value != null)

return value;

else if (enclosing != null)

return enclosing.lookup(name);

else throw new SymbolNotFoundException();

}

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Calls

How can an interpreter tell in Scheme whether an expression is a
function call?

Any time the interpreter sees an unquoted list, which can be
recognized by its parentheses.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Calls

How can an interpreter tell in Scheme whether an expression is a
function call?

Any time the interpreter sees an unquoted list, which can be
recognized by its parentheses.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Call Evaluation

How does the interpreter evaluate a function call?

1 Create a new environment with an empty frame and where
the enclosing environment is the current environment.

2 The first element of the list is the function name. The rest of
the elements, if any, make up the function’s arguments.

3 Perform a lookup of the name of the function and return its
value.

4 If the value is a built-in, then perform the evaluation rules of
that built-in.

5 Else, if the value is an anonymous function, then perform the
evaluation rules for a lambda (will describe later).

6 Else, throw an error since the value is not a function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Call Evaluation

How does the interpreter evaluate a function call?

1 Create a new environment with an empty frame and where
the enclosing environment is the current environment.

2 The first element of the list is the function name. The rest of
the elements, if any, make up the function’s arguments.

3 Perform a lookup of the name of the function and return its
value.

4 If the value is a built-in, then perform the evaluation rules of
that built-in.

5 Else, if the value is an anonymous function, then perform the
evaluation rules for a lambda (will describe later).

6 Else, throw an error since the value is not a function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Call Evaluation

How does the interpreter evaluate a function call?

1 Create a new environment with an empty frame and where
the enclosing environment is the current environment.

2 The first element of the list is the function name. The rest of
the elements, if any, make up the function’s arguments.

3 Perform a lookup of the name of the function and return its
value.

4 If the value is a built-in, then perform the evaluation rules of
that built-in.

5 Else, if the value is an anonymous function, then perform the
evaluation rules for a lambda (will describe later).

6 Else, throw an error since the value is not a function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Call Evaluation

How does the interpreter evaluate a function call?

1 Create a new environment with an empty frame and where
the enclosing environment is the current environment.

2 The first element of the list is the function name. The rest of
the elements, if any, make up the function’s arguments.

3 Perform a lookup of the name of the function and return its
value.

4 If the value is a built-in, then perform the evaluation rules of
that built-in.

5 Else, if the value is an anonymous function, then perform the
evaluation rules for a lambda (will describe later).

6 Else, throw an error since the value is not a function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Call Evaluation

How does the interpreter evaluate a function call?

1 Create a new environment with an empty frame and where
the enclosing environment is the current environment.

2 The first element of the list is the function name. The rest of
the elements, if any, make up the function’s arguments.

3 Perform a lookup of the name of the function and return its
value.

4 If the value is a built-in, then perform the evaluation rules of
that built-in.

5 Else, if the value is an anonymous function, then perform the
evaluation rules for a lambda (will describe later).

6 Else, throw an error since the value is not a function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Call Evaluation

How does the interpreter evaluate a function call?

1 Create a new environment with an empty frame and where
the enclosing environment is the current environment.

2 The first element of the list is the function name. The rest of
the elements, if any, make up the function’s arguments.

3 Perform a lookup of the name of the function and return its
value.

4 If the value is a built-in, then perform the evaluation rules of
that built-in.

5 Else, if the value is an anonymous function, then perform the
evaluation rules for a lambda (will describe later).

6 Else, throw an error since the value is not a function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Function Call Evaluation

How does the interpreter evaluate a function call?

1 Create a new environment with an empty frame and where
the enclosing environment is the current environment.

2 The first element of the list is the function name. The rest of
the elements, if any, make up the function’s arguments.

3 Perform a lookup of the name of the function and return its
value.

4 If the value is a built-in, then perform the evaluation rules of
that built-in.

5 Else, if the value is an anonymous function, then perform the
evaluation rules for a lambda (will describe later).

6 Else, throw an error since the value is not a function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

define Built-in

Definition (define)

(define name expr) creates a binding of the key name to the
value expr. (define (function-name x1 ... xN) body) is
syntactic sugar for (define function-name (lambda (x1 ...

xN) body)).

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

define Evaluation

1 Check to see if the number of parameters to the call to
define is equal to 2. If it is not equal to 2, throw an error.

2 If the first parameter is a list, then we know define is
defining a new function. Create a new anonymous function
where its parameters consist of all elements of the list except
the first, and where the body consists of the second parameter
of the define call.

3 Else, if the first parameter is a symbol, then evaluate expr

and keep its result as a variable.

4 No matter what, in the current environment, assign the key
name or function-name to its value.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

define Evaluation

1 Check to see if the number of parameters to the call to
define is equal to 2. If it is not equal to 2, throw an error.

2 If the first parameter is a list, then we know define is
defining a new function. Create a new anonymous function
where its parameters consist of all elements of the list except
the first, and where the body consists of the second parameter
of the define call.

3 Else, if the first parameter is a symbol, then evaluate expr

and keep its result as a variable.

4 No matter what, in the current environment, assign the key
name or function-name to its value.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

define Evaluation

1 Check to see if the number of parameters to the call to
define is equal to 2. If it is not equal to 2, throw an error.

2 If the first parameter is a list, then we know define is
defining a new function. Create a new anonymous function
where its parameters consist of all elements of the list except
the first, and where the body consists of the second parameter
of the define call.

3 Else, if the first parameter is a symbol, then evaluate expr

and keep its result as a variable.

4 No matter what, in the current environment, assign the key
name or function-name to its value.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

define Evaluation

1 Check to see if the number of parameters to the call to
define is equal to 2. If it is not equal to 2, throw an error.

2 If the first parameter is a list, then we know define is
defining a new function. Create a new anonymous function
where its parameters consist of all elements of the list except
the first, and where the body consists of the second parameter
of the define call.

3 Else, if the first parameter is a symbol, then evaluate expr

and keep its result as a variable.

4 No matter what, in the current environment, assign the key
name or function-name to its value.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Evaluating a Function Call to an Anonymous Function

How do we evaluate function calls like ((lambda (x y) (+ x x

y y)) 2 3)?

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Evaluating a Function Call to an Anonymous Function

1 Check if the number of arguments is equal to the number of
parameters. If they are not equal, throw an error.

2 For each parameter, in the current environment assign each
parameter (the key) to its argument (the value; for example,
x = 2 and y = 3).

3 Evaluate the body of the anonymous function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Evaluating a Function Call to an Anonymous Function

1 Check if the number of arguments is equal to the number of
parameters. If they are not equal, throw an error.

2 For each parameter, in the current environment assign each
parameter (the key) to its argument (the value; for example,
x = 2 and y = 3).

3 Evaluate the body of the anonymous function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Evaluating a Function Call to an Anonymous Function

1 Check if the number of arguments is equal to the number of
parameters. If they are not equal, throw an error.

2 For each parameter, in the current environment assign each
parameter (the key) to its argument (the value; for example,
x = 2 and y = 3).

3 Evaluate the body of the anonymous function.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Evaluating quote

When encountering a call to the quote function, do not
evaluate its parameter.

What quote means is to leave whatever is inside unevaluated.

(quote ()) is how Scheme defines empty lists.

In full-fledged Scheme implementations, the ’ character is used
as shorthand for quote, but this is not required in Project 3.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Metacircular Evaluators

Definition (Metacircular Evaluator)

An evaluator that is said to be metacircular is one that is
implemented in the same language that is being interpreted.

Project 3 is a metacircular evaluator; you will be writing your
Scheme interpreter in Scheme.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

eval and apply

Scheme and other Lisp languages offer an eval function that
evaluates any S-expression and a apply function that performs a
function call given a function and its arguments.

; Note that eval requires

; an environment

(eval ’(+ 1 2 3) env) ; returns 6

(apply + ’(1 2 3)) ; returns 6

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

The Power of eval and apply

The functions eval and apply make it possible for Scheme
programs to arbitrarily execute Scheme expressions that are not
part of the source code, which can be very powerful.

In Project 3,
you will be writing your own eval and apply functions called
my-eval and my-apply, respectively.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

The Power of eval and apply

The functions eval and apply make it possible for Scheme
programs to arbitrarily execute Scheme expressions that are not
part of the source code, which can be very powerful. In Project 3,
you will be writing your own eval and apply functions called
my-eval and my-apply, respectively.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Table of Contents

1 Interpreters in General

2 Building a Scheme Interpreter

3 Preview of Next Lecture

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator



Interpreters in General Building a Scheme Interpreter Preview of Next Lecture

Agenda for Next Lecture:

Discuss Project 1 grades and answers.

Discuss some implementation tips for Project 3, including
vector data types in Scheme.

Go over examples of evaluating Scheme expressions using
environments.

Michael McThrow San Jose State University Computer Science Department CS 152 – Programming Paradigms

Building an Evaluator


	Interpreters in General
	Building a Scheme Interpreter
	Preview of Next Lecture

