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PAIRS ALLOWED: You may choose to work in pairs on this project.  Keep in mind that once you 
begin working as partners, you may not change partners during the duration of the project, though you 
may either choose a different partner or work alone in the next project that allows pairs.

Introduction

Your task for Project #3 is to write an interpreter for Scheme using Scheme in DrRacket.  Your 
interpreter will be called my-scheme.scm and it will be written in R5RS Scheme just as Project #2.  
(Make sure your program begins with the line #lang r5rs to ensure it is a R5RS Scheme program.) 
An interpreter written in the same language that is to be interpreted is known as a metacircular 
interpreter.  For example, if we wrote a Python interpreter in Python, that interpreter would be 
metacircular.

Your task is to define the function eval-prog, which evaluates a list of S-expressions while 
maintaining the environment(s) that each S-expression needs.  The function eval-prog returns the 
evaluated result of the final S-expression in the input list.

For example, if we call (eval-prog ‘((+ 1 2 3 4 5))), it should return 15.  Calling 
(eval-prog ‘((define x 10) x)) should return 10.

The beauty about writing a Scheme interpreter in Scheme is that we don’t have to worry about parsing 
S-expressions.  In fact, we don’t have to write any string-handling code at all in our evaluator.  Instead, 
we can simply leverage Scheme’s built-in support for handling S-expressions.

It is your choice regarding how to implement the environment (e.g., cons pairs, lists, binary search 
trees, etc.) as long as they adhere to functional programming style (i.e., no mutation and no side 
effects).  You may want to look into R5RS Scheme’s vector data type, which may be more efficient 
than list-based data structures for environments.

Remember, we will not be using mutation in this program.  The challenge of implementing an 
interpreter in functional programming style is not using mutation for updating our environments.

Part 1: Evaluating Primitive Types (20% of maximum points)

Your first milestone is to make sure that you can evaluate very simple expressions that are not function 

calls or are not syntactic sugar of function calls (e.g., ‘(1 2 3) is syntactic sugar for (cons 1 
(cons 2 (cons 3 ()))), which is a function call).  For example, (eval-prog '(5)) 
should return 5.  The same applies to boolean values #t and #f.  If the expression that you are 

evaluating is a symbol, perform an environmental lookup.  (For testing purposes, you may want to 

build test environments that can be used while you don’t have functions like define and set! 

working.)  If the symbol resolves to an expression, return the value of that expression.  If the symbol 



resolves to a built-in function, then return ‘BUILT-IN-FUNCTION.  If the symbol resolves to a non-

built-in procedure, then return ‘PROCEDURE.

Part 2: Primitive Functions (80% of maximum points)

Your task is to implement all of the primitive functions listed in Appendix A.  Here are the weights of 
the following implementations:

Function/Function Class Percentage of Maximum Points

define 10%

lambda 10%

set! 10%

cons, car, cdr 10%

if 5%

quote 5%

+, -, *, /, remainder, modulo, 
and, or

7.5%

eq?, equal?, =, >, <, >=, <=, =, 
empty?, number?, pair?, 
symbol?

7.5%

The ability to call functions, 
whether built-in or program-
defined.

15%

Once the above has been implemented, we can run Scheme programs such as the following:

(define (even? n)
  (= (remainder n 2) 0))
(even 10)

(define (length elems)
  (if (empty? elems) 0 (+ 1 (length (cdr elems)))))
(length (cons 1 (cons 3 (cons 5 (quote ())))))

Return Values
• eval-prog returns the evaluation of the final S-expression in the S-expression list.  For 

example, if I run

(eval-prog ‘((define x 10) (set! x (+ 2 3)) (* x x)))

it should return 25 as its answer.



Grading Nodes
• If your code does not run due to syntactic errors, then that relevant portion of the code gets a 

zero grade.
• Your program must begin with the line #lang r5rs.
• Your function eval-prog must have the parameters in the exact order as specified; do not 

change the number of parameters, their order, or their expected types, or they won’t get graded.
• Your submission must be a single file called my-scheme.scm.  Do not split your work into 

separate files.
• Mutation is banned, even when implementing set! in your interpreter.  If you use set!, set-

car!, set-cdr!, or any other function that uses mutation, then that code gets a zero grade.
• Do not use Scheme’s eval function to implement any portion of this assignment, or you won’t 

get credit for those portions.
• Please refrain from defining custom macros in your source code.

Tips
• START EARLY!  This may turn out to be the toughest assignment in this course, so allow 

yourselves plenty of time to complete this interpreter.  I highly recommend working with a 
partner on this assignment.

• I highly recommend building a collection of test cases that you can use to test your Scheme 
interpreter.

• Remember that any expression in the dialect of Scheme defined in this project is a valid R5RS 
Scheme expression.

• Approved References:
◦ Feel free to use Sections 3.2 and 4.1 of Structure and Interpretation of Computer Programs, 

which discusses how environments work and how a basic Scheme interpreter works.  It is 
okay to use this reference.  Please keep in mind that your environment will not use 
mutation, whereas in the textbook the environment it uses is modified using mutation.

◦ I am also okay with you using Peter Norvig’s Java (https://norvig.com/jscheme.html) and 
Python (https://norvig.com/lispy.html) implementations of Scheme interpreters as a 
reference. Once again, these implementations have the same caveat as the one in SICP.

◦ For the curious who is really interested in learning more about the history of Lisp, I highly 
recommend taking a read of the first 13 pages of The LISP 1.5 Programmer’s Manual 
(http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers
%20Manual.pdf).  Page 13 has a description of a basic LISP 1.5 interpreter, which Alan Kay
calls “the Maxwell equations of software.”  Please keep two things in mind:
▪ LISP 1.5 is a very early version of Lisp from 1962 that has different semantics from 

Scheme (particularly when it comes to variable scoping) or from other modern Lisps 
such as Common Lisp and Clojure.

▪ The syntax of page 13 is not our familiar S-expressions, but an earlier syntax known as 
M-expressions.  It turns out that when John McCarthy created Lisp in the late 1950s, he 
originally meant to have Lisp implemented using M-expressions; S-expressions were 
originally meant as primitive representations of Lisp expressions.  However, when one 
of his students read his paper and implemented Lisp, he used S-expressions.  The other 
researchers in McCarthy’s lab also wrote their Lisp programs in S-expressions, and S-
expressions ultimately became the canonical way of writing Lisp programs.  However, 
there have been attempts at making Lisp-style languages that don’t use S-expressions; in

https://norvig.com/jscheme.html
http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
http://www.softwarepreservation.org/projects/LISP/book/LISP%201.5%20Programmers%20Manual.pdf
https://norvig.com/lispy.html


the 1990s Apple worked on an object-oriented Lisp called Dylan which syntax 
resembles contemporary procedural programming languages.  Julia, which is growing in
popularity among data scientists, is heavily inspired by Lisp yet also eschews S-
expressions, and some have liked JavaScript to Lisp.

◦ If you do study any approved references, cite them in your code comments.
◦ Please don’t refer to any other Scheme or Lisp implementations, however.



Appendix A: Scheme Primitive Functions

Name Usage Definition

define (define name expr)
(define (function-name x1 …
xN) body)

If the second element is a symbol, then evaluates 
expr and assigns it to name in the current 
environment.  If the second element is a list, then 
this is syntactic sugar for (define function-
name (lambda (x1 … xN) body))

lambda (lambda (x1 … xN) body) Creates an anonymous function that evaluates body
with parameters x1 to xN, or with no parameters.  
Note that body can consist of multiple expressions 
expr1 to exprM.  The result of body is the value of
the final expression exprM.

set! (set! name expr) Evaluates expr and modifies the value stored at 
name to be the evaluated result of expr.

cons (cons expr1 expr2) Creates a cons cell where the first element contains 
the evaluated result of expr1 and the second 
element contains the evaluated result of expr2.

car (car expr) Returns the first element of the cons cell expr1.  If 
expr does not evaluate to a cons cell, then return an 
error.

cdr (cdr expr) Returns the second element of the cons cell expr1.  
If expr does not evaluate to a cons cell, then return 
an error.

quote (quote expr) Returns expr without evaluating it.

+ (+ x1 … xN) Performs the sum x1 + … + xN.  If there is only 
one argument x1, it returns x1.

- (- x1 … xN) Performs the repeated difference x1 - … - xN.  If 
there is only one argument x1, then it negates it.

* (* x1 … xN) Performs the product x1 * … * xN.  If there is only 
one argument x1, it returns x1.

/ (/ x1 … xN) Performs the repeated division x1 / … / xN.  If 
there is only one argument x1, it returns 1 divided 
by x1.  Returns an error if any of the parameters 
evaluate to 0.

remainder (remainder x y) Returns the remainder of the division x divided by 
y.

modulo (modulo x y) Returns the modulo of the division x divided by y.  
There is a nuance between remainder and modulo 
that is important when dealing with negative 
numbers.



and (and x1 … xN) Performs x1 ˄ … ˄ xN.  Returns #f at the first 
occurrence of a parameter that evaluates to #f.

or (or x1 … xN) Performs x1 ˅ … ˅ xN.  Returns #t at the first 
occurrence of a parameter that evaluates to #t.

if (if expr1 expr2 expr3) If expr1 evaluates to #t, then evaluate expr2 and 
return it.  Otherwise evaluate expr3 and return it.

= (= expr1 expr2) If expr1 and expr2 both evaluate to numbers, then 
this function checks to see if they are equal.  
Returns #t if equal, #f otherwise.  Returns an error 
if expr1 or expr2 don’t evaluate to numbers.

> (> expr1 expr2) If expr1 and expr2 both evaluate to numbers, then 
this function checks to see if expr1 > expr2.  
Returns #t if equal, #f otherwise.  Returns an error 
if expr1 or expr2 don’t evaluate to numbers.

< (< expr1 expr2) If expr1 and expr2 both evaluate to numbers, then 
this function checks to see if expr1 < expr2.  
Returns #t if equal, #f otherwise.  Returns an error 
if expr1 or expr2 don’t evaluate to numbers.

>= (>= expr1 expr2) If expr1 and expr2 both evaluate to numbers, then 
this function checks to see if expr1 >= expr2.  
Returns #t if equal, #f otherwise.  Returns an error 
if expr1 or expr2 don’t evaluate to numbers.

<= (<= expr1 expr2) If expr1 and expr2 both evaluate to numbers, then 
this function checks to see if expr1 <= expr2.  
Returns #t if equal, #f otherwise.  Returns an error 
if expr1 or expr2 don’t evaluate to numbers.

eq? (eq? expr1 expr2) Evaluates the expr1 and expr2 and checks if they 
both evaluate to symbols of the same name.  Note 
that symbols are case-sensitive.  Returns #t if they 
do, #f otherwise.

equal? (equal? expr1 expr2) Encompasses = and eq? for numbers and symbols, 
respectively, and also checks cons cells for equality.

empty? (empty? expr) Returns #t if expr evaluates to the empty list, #f 
otherwise.

number? (number? expr) Returns #t if expr evaluates to a number, #f 
otherwise.

pair? (pair? expr) Returns #t if expr evaluates to a cons cell, #f 
otherwise.

symbol? (symbol? expr) Returns #t if expr evaluates to a symbol, #f 
otherwise.  Note that the Boolean constants #t and 
#f are not considered symbols, but rather constants 
of the Boolean type.
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